期刊文献+

基于多尺度信息熵的雷达辐射源信号识别 被引量:21

Radar Emitter Signal Identification Based on Multi-scale Information Entropy
下载PDF
导出
摘要 随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字符集尺度下将雷达信号转换为符号化序列;然后联合各符号序列的信息熵值,组成MSIE特征向量;最后,使用k邻近算法(k-NN)作为分类器实现雷达信号的分类识别。通过仿真6种典型的雷达信号进行验证,结果表明该方法在信噪比(SNR)为5 dB时,不同雷达信号的识别正确率大于90%,并且优于传统的基于复杂度特征(盒维数和稀疏性)的识别方法。 With the increasing complexity of radar signals,it is more and more difficult to extract features of the real sequences,but when they are transformed to a symbol sequence,it is usually easier to mine the effective feature parameters.Therefore,a radar signal recognition method based on Multi-Scale Information Entropy (MSIE) is proposed.Firstly,the radar signal is transformed into symbolic sequence by Symbolic Aggregate approXimation (SAX) algorithm under different character number scales.Then,the information entropy of each symbol sequence is combined to form the MSIE feature vector.Finally,the k-Nearest Neighbor (k-NN) is used as a classifier to realize the classification and identification of radar signals.The simulation results of 6 typical radar signals show that using the proposed method the correct recognition rate of different radar signals is greater than 90% when Signal to Noise Ratio (SNR) is 5 dB,and better performance can be obtaned conpared with the traditional identification method based on complexity characteristics (box-dimension and sparseness).
作者 黄颖坤 金炜东 葛鹏 李冰 HUANG Yingkun;JIN Weidong;GE Peng;LI Bing(College of Electrical Engineering,Southwest Jiao Tong University,Chengdu 610031,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第5期1084-1091,共8页 Journal of Electronics & Information Technology
基金 国家重点研发计划项目(2016YFB1200401-102F) 中央高校基本科研业务费专项资金(2682017CX046)~~
关键词 雷达信号识别 符号聚合近似算法 多尺度信息熵 k邻近算法 Radar signal identification Symbolic Aggregate approXimation (SAX) algorithm Multi-Scale Information Entropy (MSIE) k-Nearest Neighbor (k-NN) algorithm
  • 相关文献

参考文献4

二级参考文献46

  • 1金宁德,李伟波.非线性时间序列的符号化分析方法研究[J].动力学与控制学报,2004,2(3):54-59. 被引量:13
  • 2张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报,2004,23(6):477-480. 被引量:19
  • 3郭杰,陈军文.一种处理未知雷达信号的聚类分选方法[J].系统工程与电子技术,2006,28(6):853-856. 被引量:26
  • 4何昭水,谢胜利,傅予力.信号的稀疏性分析[J].自然科学进展,2006,16(9):1167-1173. 被引量:12
  • 5Nelson D J. Special purpose correlation functions for Improved signal detection and parameter estimation[C]. ICASSP, Minneapolis, USA, 1993, 4: 73-76.
  • 6Nishiguchi K and Kobayashi M. Improved algorithm for estimating pulse repetition intervals [J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 407-421.
  • 7Zhang Ge-xiang, Rong Hai-na, Hu Lai-zhao, and Jin Wei-dong. Entropy feature extraction approach of radar emitter signals [C]. Proceedings of International Conference on Intelligent Mechatronics and Automation, Chengdu, China, 2004: 621-625.
  • 8Han Jun, He Ming-hao, Mao Yan, and Ren Ming-qiu. A new method for recognizing radar radiating-source [C]. ICWAPR, Beijing, China, 2007, 4: 1665-1668.
  • 9Yang Jian-chao, Wright J, Huang T, and Ma Yi. Image super-resohltion as sparse representation of raw image patches[C]. IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 2008:1-8.
  • 10Wang Li-wei, Zhu Yuan-qing, and Pan Ying-feng. FCM algorithm and index CS for the signal sorting of radiant points[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007: 4415-4419.

共引文献94

同被引文献175

引证文献21

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部