期刊文献+

A Perspective of Conventional and Bio-inspired Optimization Techniques in Maximum Likelihood Parameter Estimation

下载PDF
导出
摘要 Maximum likelihood estimation is a method of estimating the parameters of a statistical model in statistics. It has been widely used in a good many multi-disciplines such as econometrics, data modelling in nuclear and particle physics, and geographical satellite image classification, and so forth. Over the past decade, although many conventional numerical approximation approaches have been most successfully developed to solve the problems of maximum likelihood parameter estimation, bio-inspired optimization techniques have shown promising performance and gained an incredible recognition as an attractive solution to such problems. This review paper attempts to offer a comprehensive perspective of conventional and bio-inspired optimization techniques in maximum likelihood parameter estimation so as to highlight the challenges and key issues and encourage the researches for further progress.
出处 《Journal of Autonomous Intelligence》 2018年第2期1-12,共12页 自主智能(英文)
  • 相关文献

参考文献1

二级参考文献24

  • 1Stoica P, Sharman K C. Maximum likelihood methods for direction-of-arrival estimation. IEEE Transactions on Acoustics, Speech and Signal Ptvcessing, 1990, 38, 1132-1143.
  • 2Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propaga- tions, 1986, 34, 276-280.
  • 3Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37, 984-995.
  • 4Ziskind I, Wax M. Maximum likelihood localization of multiple sources by alternating projection. 1EEE Transac-tions on Acoustics, Speech and Signal Processing, 1988, 36, 1553-1559.
  • 5Fessler J, Hero A. Space-alternating generalized expecta- tion-maximization algorithm. IEEE Transactions on Signal Processing, 1994, 42, 2664-2677.
  • 6Bresler Y, Macovski A. Exact maximum likelihood pa- rameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34, 1081-1089.
  • 7Gershman A B, Stoica P. New MODE-based techniques for direction finding with an improved threshold performance. Signal Processing, 1999, 76, 221-235.
  • 8Lopes A, Bonatti I S, Peres P L D, Alves C A. Improving the MODEX algorithm for direction estimation. Signal Proc- essing, 2003, 83, 2047-2051.
  • 9McClurkin G D, Sharman K C, Durrant T S. Genetic algo- rithms for spatial spectral estimation. Proceedings of Fourth Annual ASSP Workshop on Spectrum Estimation and Mod- eling, Minneapolis, USA, 1988, 318-322.
  • 10Li M, Lu Y. Genetic algorithm based maximum likelihood DOA estimation. Proceedings of RADAR, Edinburg, UK, 2002, 502-506.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部