期刊文献+

一种基于加权颜色形状特征和LBP-GLCM纹理特征提取的服装图像检索方法 被引量:2

A Clothing Image Retrieval Method Based on Weighted Color Shape Feature and LBP-GLCM Texture Feature Extraction
下载PDF
导出
摘要 为了提高颜色和纹理特征在服装图像检索中的准确性,本研究提出一种基于加权颜色形状特征和LBPGLCM纹理特征提取的服装图像检索方法以提高服装图像检索的精度。首先,在第一道检索中运用颜色直方图和Hu不变矩的特性进行加权处理,而后,再运用Uniform-旋转不变局部二值模式算子对返回的结果进行处理,得到相对稳定的编码图像。实验证明,此方法能将不同特征的优势进行融合,使之相互补充,检索结果较之单一特征的检索更加准确。 In order to improve the accuracy of color and texture features in garment image retrieval, a garment image retrieval method based on weighted color shape feature and LBP-GLCM texture feature extraction is proposed to improve the accuracy of garment image retrieval.Firstly, the color histogram and Hu invariant moments are used in the first retrieval to process the weights. Then, the Uniform-rotation invariant local binary pattern operator is used to process the returned results, and a relatively stable encoding image is obtained.Experiments show that this method can fuse the advantages of different features and make them complement each other. The retrieval result is more accurate than that of single feature.
作者 缪智文 何丽嘉 刘洞波 Miao Zhi-wen;He Li-jia;Liu Dong-bo(Hunan Institute of Engineering,Xiangtan 411104,China)
机构地区 湖南工程学院
出处 《纺织报告》 2019年第4期4-7,共4页
关键词 服装图像检索 加权 颜色直方图 LBP-GLCM 局部二值模式 Clothing Image Retrieval Weighting Color Histogram LBP-GLCM Local Binary Pattern
  • 相关文献

参考文献5

二级参考文献51

  • 1Anil K Jain.Statistical Pattern Recognition:A Review[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),2000,22(1):4-37.
  • 2Trier O D.Feature extraction methods for character recognition[J].Pattern Recognition(S0031-3203),1996,29(4):641-662.
  • 3李丙涛 纪纲.印刷体数字识别算法在枪械编号识别中的应用.计算机科学,2009,36(4):282-284.
  • 4Lam L.Thinning methodologies[J].IEEE Transaction on Pattern Analysis and Machine Intelligence(S0162-8828),1992,14(9):869-885.
  • 5Christopher M Bishop.Neural Networks for Pattern Recognition[M].England:Oxford University Press,1995:164-190.
  • 6Text retrieval Conference (TREC) web page[EB/OL], http://trec. nist. gov/, Sponsored by the National Institute of Standards and Technology (NIST) and U.S. Department of Defense.
  • 7Santini S. Evaluation vademecum for visual information system[J]. Proceedings of SPIE, 2000,3972:132-143.
  • 8Markus Koskela, Jorma Laaksonen, Sami Laakso, et al.Evaluating the performance of content-based image retrieval systems[A]. In: International Conference on Visual Information Systems (Visual 2000) [C], Lyon, France, 2000:2-4.
  • 9McDonald Sharon, Lai Ting-Sheng, Tait John. Evaluating a content based image retrieval system[A]. In.. Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval [C], New Orleans,Louisiana, USA, 2001:232-240.
  • 10Leung C, Ip H. Benchmarking for content-based visual information search[A]. In: International Conference on Visual Information Systems (VISUAL 2000 ) [C ], Lyon, France,2000:2-4.

共引文献44

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部