摘要
基于我国区域用电量数据展开了短期用电量预测研究,采用了基于残差自回归方法的时间序列预测模型,有效提高了短期区域用电量预测准确性。相比于传统的时间序列模型(ARIMA模型和Holt-Winters模型),基于残差自回归方法的时间序列预测模型的MAPE值和RMSE值均最小,并在两个不同的数据集上表现平稳。
This paper applies time series model based on residual autoregression to regional electricity demand data in China which effectively improves the accuracy of short-term regional electricity demand forecasting.Compared with the traditional time series models(the ARIMA model and the Holt-Winters model),the model based on residual autoregression has smaller MAPE and RMSE values and is stable on two different data sets.
作者
闵旭
叶青
蔡高琰
Min Xu;Ye Qing;Cai Gaoyan(School of Economics and Management,Tsinghua University,Beijing 100084,China;HODI Technology Co.,Ltd,Foshan Guangdong 528000,China)
出处
《技术经济》
CSSCI
北大核心
2019年第6期119-124,共6页
Journal of Technology Economics
基金
国家自然科学基金项目“大数据环境下的运营策略优化与协调研究”(71490723)
关键词
时间序列
残差自回归
短期区域用电量预测
time series
residual autoregression
short-term regional electricity demand forecasting