期刊文献+

基于遗传算法优化支持向量机的超声图像缺陷分类 被引量:15

Ultrasonic Image Defect Classification Based on Support Vector Machine Optimized by Genetic Algorithm
下载PDF
导出
摘要 超声图像缺陷在分类时由于存在样本数量少、样本类别多、不易区分等问题,分类的准确率较低。针对这些问题,提出了基于遗传算法优化支持向量机的超声图像缺陷分类方法。该方法首先通过图像处理提取超声图像缺陷的特征数据,然后训练支持向量机作为超声图像缺陷分类器,最后采用遗传算法优化参数求得最优的分类器。实验结果表明,提出的超声图像缺陷分类器在识别率方面优于其他方法的分类器,综合识别率达到了90%,可以有效地辅助工作人员对超声图像缺陷进行分类识别。 Ultrasound image defects are classified at a low accuracy due to problems such as small sample size,large sample categories,and difficulty in distinguishing. Aiming at these problems,an ultrasonic image defect classification method based on support vector machine optimized by genetic algorithm was proposed. First,the feature data of ultrasonic image defect is extracted by image processing. Then,the support vector machine was trained as ultrasonic image defect classifiers. Finally the parameters of the classifiers were optimized by genetic algorithm to obtain the optimal classifiers.The experimental results show that the proposed ultrasonic image defect classifier is superior to the other methods in the recognition rate,and the comprehensive recognition rate reaches 90%,which can effectively assist the staff to classify and identify the ultrasonic image defects.
作者 张沫 郑慧峰 倪豪 王月兵 郭成成 ZHANG Mo;ZHENG Hui-feng;NI Hao;WANG Yue-bing;GUO Cheng-cheng(College of Metrology & Measurement Engineering,China Jiliang University,Hangzhou,Zhejiang 310018,China)
出处 《计量学报》 CSCD 北大核心 2019年第5期887-892,共6页 Acta Metrologica Sinica
基金 国家重点研发项目(2017YFF0205004) 国家自然科学基金(11474259) 浙江省自然科学基金(LY17E050015) 浙江省质量技术监督系统科研计划(20180103) 浙江省“仪器科学与技术”重中之重学科人才培育项目(JL150506) 浙江省大学生科研创新团队资助项目(2018R409053)
关键词 计量学 超声图像 缺陷分类 遗传算法 支持向量机 metrology ultrasound imag fect classification genetic algorithm support vector machine
  • 相关文献

参考文献8

二级参考文献101

共引文献1062

同被引文献153

引证文献15

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部