摘要
显著性目标检测旨在于一个场景中自动检测能够引起人类注意的目标或区域,在自底向上的方法中,基于多核支持向量机(SVM)的集成学习取得了卓越的效果。然而,针对每一张要处理的图像,该方法都要重新训练,每一次训练都非常耗时。因此,该文提出一个基于加权的K近邻线性混合(WKNNLB)显著性目标检测方法:利用现有的方法来产生初始的弱显著图并获得训练样本,引入加权的K近邻(WKNN)模型来预测样本的显著性值,该模型不需要任何训练过程,仅需选择一个最优的K值和计算与测试样本最近的K个训练样本的欧式距离。为了减少选择K值带来的影响,多个加权的K近邻模型通过线性混合的方式融合来产生强的显著图。最后,将多尺度的弱显著图和强显著图融合来进一步提高检测效果。在常用的ASD和复杂的DUT-OMRON数据集上的实验结果表明了该算法在运行时间和性能上的有效性和优越性。当采用较好的弱显著图时,该算法能够取得更好的效果。
Salient object detection which aims at automatically detecting what attracts human’s attention most in a scene,bootstrap learning based on Support Vector Machine(SVM)has achieved excellent performance in bottom-up methods.However,it is time-consuming for each image to be trained once based on multiple kernel SVM ensemble.So a salient object detection model via Weighted K-Nearest Neighbor Linear Blending(WKNNLB)is proposed.First of all,existing saliency detection methods are employed to generate weak saliency maps and obtain training samples.Then,Weighted K-Nearest Neighbor(WKNN)is introduced to learning salient score of samples.WKNN model needs no pre-training process,only needs selecting K value and computing saliency value by the K-nearest neighbors labels of training sample and the distances between the K-nearest neighbors training samples and the testing sample.In order to reduce the influence of selecting K value,linear blending of multi-WKNNs is applied to generating strong saliency maps.Finally,multi-scale saliency maps of weak and strong model are integrated together to further improve the detection performance.The experimental results on common ASD and complex DUT-OMRON datasets show that the algorithm is effective and superior in running time and performance.It can even perform favorable against the state-of-the-art methods when adopting better weak saliency map.
作者
李炜
李全龙
刘政怡
LI Wei;LI Quanlong;LIU Zhengyi(College of Computer Science and Technology,Anhui University,Hefei 230601,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2019年第10期2442-2449,共8页
Journal of Electronics & Information Technology
关键词
显著性目标检测
集成学习
线性混合
加权的K近邻
Salient object detection
Bootstrap learning
Linear blending
Weighted K-Nearest Neighbor(WKNN)