期刊文献+

多层次轮廓约束的图像放大算法

Image Magnification with Multi-Level Contour Constraints
下载PDF
导出
摘要 为解决图像放大过程中有效地保证边缘锐化的图像插值难题,提出多层次轮廓约束的图像放大算法.首先利用检测算子对图像进行预处理,将图像分为边缘区域、平坦区域;其次,针对图像边缘区域进行自适应梯度扩散获取适当的边缘轮廓层作为图像放大约束;最后对轮廓层直接进行曲线插值重采样,不额外增加边缘层数,以保证放大后的图像在视觉上的边缘清晰.对于非轮廓层的平坦区域,构建双三次Coons插值曲面并进行重采样,保持了平坦区域的平滑性.测试图像为自然图像和医学图像,自然图像的来源是set5和set14测试集,实验对比方法主要从客观效果、视觉效果、时间复杂度3个方面进行比较.实验结果表明,采用该算法得到的放大图像不仅可以保持轮廓清晰,且PSNR及SSIM指标超过了大多数经典的插值算法以及目前流行的基于机器学习的算法. Effective edge sharpening in image enlargement is always a difficult problem in image interpolation, and in order to solve this problem, an image enlargement algorithm with multi-level contour constraints is proposed. The detection operator is used to preprocess the image, and the image is divided into edge region and flat region. Adaptive gradient diffusion is applied to the edge region of the image to obtain an appropriate edge contour layer as an image magnification constraint. Finally, the contour layer is re-sampled directly through curve interpolation without adding additional edge layers to ensure that the enlarged image has clear visual edges. For the flat area of the non-contour layer, the bi-cubic Coons interpolation surface is constructed and resampled to maintain the smoothness of the flat region. The test images are natural images and medical images. The source of natural images is set5 and set14 test sets. The experimental comparison is mainly made from three aspects: objective effect, visual effect and time complexity. The experimental results show that the enlarged image obtained by the new algorithm can not only keep the contour clear, but also the PSNR and SSIM indexes exceed most classical interpolation algorithms and the popular machine learning-based algorithms.
作者 王珊 高珊珊 郭宁宁 张彩明 Wang Shan;Gao Shanshan;Guo Ningning;Zhang Caiming(School of Computer Science and Technology, Shandong University of Finance and Economics, Ji'nan 250014;Shandong Provincial Key Laboratory of Digital Media Technology, Ji'nan 250014;Software College, Shandong University, Ji'nan 250101;Shandong Co-Innovation Center of Future Intelligent Computing, Yantai 264025)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1817-1830,共14页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然基金重点项目-NSFC-浙江两化融合联合基金(U1609218) 国家自然科学基金(61772309,61572286) 山东省重点研发计划项目(2017GGX10109,2019GGX101007,2016GSF120013) 山东省高等学校优势学科人才团队培育计划
关键词 图像放大 轮廓层 梯度扩散 图像插值 image magnification contour layer gradient diffusion interpolation
  • 相关文献

参考文献2

二级参考文献12

  • 1李钰,孟祥萍.自适应双阈值Canny算子的图像边缘检测[J].长春工程学院学报(自然科学版),2007,8(3):44-46. 被引量:12
  • 2冈萨雷斯.数字图像处理:二版[M].北京:电子工业出版社,2007:463-491.
  • 3冈萨雷斯.数字图像处理:MATLAB版[M].北京:电子工业出版社,2005:289-295.
  • 4MEI Fang, YUE Guang-xue, YU Qing-cang. The Study on An Application of Otsu Method in Canny Operator [C]//ISIP'09, Huangshan, China, August21-23, 2009: 109-112.
  • 5WANG Zhi. Fast Adaptive Threshold for the Canny Edge Detector [J]. Proc. of SPIE(S0277-786X), 2005, 6044: 60441Q1-60441Q8.
  • 6John Canny. A Computational Approach to Edge Detection [J]. IEEE Trans. Pattern Analysis and Machine Intelligence(S0162-8828), 1986, 8(6): 679-698.
  • 7Otsu N. A threshold selection method from gray-level histogram [J]. IEEE Transactions on system Man Cybernetics(S1083-4419), 1979, 9(1): 62-66.
  • 8Ping Sung Liao. A Fast Algorithm for Multilevel Thresholding [J]. Journal of Information Science and Engineering (S1016-2364), 2001, 17: 713-727.
  • 9李牧,闫继红,李戈,赵杰.自适应Canny算子边缘检测技术[J].哈尔滨工程大学学报,2007,28(9):1002-1007. 被引量:89
  • 10雒涛,郑喜凤,丁铁夫.改进的自适应阈值Canny边缘检测[J].光电工程,2009,36(11):106-111. 被引量:71

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部