期刊文献+

基于由粗到精定位的列车驾驶员瞳孔和眼角点检测 被引量:2

Detection of Train Driver’s Pupil and Eye Corner Based on Coarse to Fine Positioning
下载PDF
导出
摘要 提出一种由粗到精定位的列车驾驶员瞳孔和眼角点检测方法,采用基于监督下降法的面部特征点定位和跟踪技术对驾驶员的眼角点进行粗定位,在面部特征点正确定位的基础上根据相应点的位置获取眼睛图像。采用圆形模板求得眼睛图像中每个像素点的灰度比率,并将其作为权值获取积分投影曲线,对瞳孔点粗定位。将已检测到的瞳孔中心点和眼角点作为初始点,采用基于局部二值特征的定位技术对眼角点和瞳孔位置进行精确定位。利用视频和图像数据库进行实验测试,实验结果表明:提出的方法能够有效定位驾驶员眼角点和瞳孔位置,其瞳孔检测精度优于最新提出的方法。 This paper proposed a train driver’s pupil and eye corner detection method based on coarse to fine positioning. First, a facial landmark positioning and tracking technology based on supervised descent method was used to roughly locate the eye corners of drivers, and extract eye images based on the position of corresponding points resulted from the correct location of facial feature points. Then, a circular sliding template was used to traverse the eye image to obtain the gray ratio of each pixel, and a weighted integral projection method was used to detect the pupils, roughly. Finally, the detected landmarks on eye corners and pupils were adopted as the initial points, and a location technology based on local binary feature was used to precisely locate the position of the pupils and eyes corners. Image and video datasets were adopted to evaluate the proposed method. The experimental results show that this algorithm can effectively locate the position of the pupils and eye corners of drivers and outperforms other state-of-the-art methods for pupil detection.
作者 王增才 赵磊 房素素 张国新 齐亚州 WANG Zengcai;ZHAO Lei;FANG Susu;ZHANG Guoxin;QI Yazhou(School of Mechanical Engineering, Shandong University, Jinan 250061, China;Key Laboratory of High-efficiency and Clean Mechanical Manufacture, Ministry of Education, Jinan 250061,China)
出处 《铁道学报》 EI CAS CSCD 北大核心 2019年第10期61-67,共7页 Journal of the China Railway Society
基金 山东省自然科学基金(ZR2018MEE015) 汽车仿真与控制国家重点实验室开放基金(20161105)
关键词 瞳孔检测 眼角点定位 局部二值特征 监督下降法 pupil detection eye corner location local binary features supervised descent method
  • 相关文献

参考文献3

二级参考文献29

  • 1顾华,苏光大,杜成.人脸的眼角自动定位[J].红外与激光工程,2004,33(4):375-379. 被引量:14
  • 2Xie X, Sudhakar R, Zhuang H. On improving eye feature extraction using deformable templates [ J]. Pattern Recognition, 1997, 27(6) : 791-799.
  • 3Zhu J, Yang J. Subpixel eye gaze tracking [ C ]//Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC: IEEE, 2002: 124-129.
  • 4Xu Cui, Zheng Ying, Wang Zengfu. Semantic feature extraction for accurate eye corner detection [ C ]//Proceedings of IEEE International Conference on Pattern Recognition Tampa FL: IEEE, USA, 2008: 1-4.
  • 5Feng G C, Yuen P C. Variance projection function and its application to eye detection for human face recognition [ J ]. Pattern Recognition, 1998, 19(9) :899-906.
  • 6Zhou Z. Geng X. Projection functions for eye detection [ J ]. Pattern Recognition, 2004, 37 (5) : 1049-1049.
  • 7Harris C G, Stephens M J. A combined corner and edge detector [ C ]//Proceedings of the 4th Alvey Vision Conference. Manchester England : IEEE, 1988 : 147-151.
  • 8Viola P, Jones hi. Rapid object detection using a boosted cascade of simple features [ C ]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, USA: IEEE, 2001: 511-518.
  • 9Baron-Cohen S. How to build a baby that can read minds: cognitive mechanisms in mind reading [J]. Current Psychology of Cognition, 1994, 13(5) : 513-552.
  • 10Villanueva A, Cabeza R. A novel gaze estimation system with one calibration point [J]. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics, 2008, 38(4): 1123-1138.

共引文献18

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部