期刊文献+

融合GNSS气象参数的BP神经网络雾霾预测研究 被引量:6

Study on Haze Prediction of BP Neural Network Incorporating GNSS Meteorological Parameters
下载PDF
导出
摘要 结合IGS中心获取的BJFS站气象参数(气温(T)、气压(P)、大气可降水量(PWV))及同期PM2.5数据,建立一种融合时序网络和回归网络的雾霾预测模型,对PM2.5浓度进行预测。研究表明,引入GNSS气象参数的融合网络模型较单一网络模型适应性强、准确度高,在一定精度范围内可准确预测PM2.5的变化,时效性达3h。本文结论验证了卫星导航技术应用于雾霾天气监测及预报的可行性。 Base on the meteorological parameters(temperature(T),air pressure(P),and precipitable water vapor(PWV)),of Beijing Fangshan Station released by the IGS Center and PM 2.5 data for the same period,this paper establishes a haze prediction model combining time series network and regression network to predict PM 2.5 concentration.The research shows that the fusion network model introducing GNSS meteorological parameters is more adaptable and accurate than the single network model,that it can accurately predict the change of PM 2.5 within a certain accuracy range,and that timeliness can reach 3h.Related studies have verified the feasibility of satellite navigation technology for monitoring and forecasting of haze weather.
作者 周永江 姚宜斌 颜笑 赵存洁 ZHOU Yongjiang;YAO Yibin;YAN Xiao;ZHAO Cunjie(School of Geodesy and Geomatics,Wuhan University,129 Luoyu Road,Wuhan,430079,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2019年第11期1148-1152,共5页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金(41574028)~~
关键词 雾霾 GNSS气象参数 BP神经网络 融合网络模型 haze GNSS tropospheric parameters BP neural network fusion network model
  • 相关文献

参考文献1

共引文献1

同被引文献70

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部