摘要
描述了一种基于直角叉树网格的Euler和N S方程自适应算法 .由于考虑了粘性的作用 ,提出并使用了四边形 叉树混合网格的方法 ,在几何表面附近生成贴体的四边形网格 ,外流场使用直角叉树网格 .采用中心有限体积法 ,对Euler及N S方程进行数值求解 ,对N S方程的计算中加入了B -L代数湍流模型 .在流场中 ,运用了网格自适应算法 ,提高了数值计算对激波、流动分离等特性的捕捉和分辨能力 .采用上述方法 。
A method for the adaptive refinement of a Quad/Cartesian grid for the solutions of the Euler and N S equations is presented.An adaptive Quad/Cartesian hybrid grid method,which retains the advantages of the Cartesian grid approach and, at the same time, touches the viscous flow problems,is provided.The body fitted Quad grids are generated around the body and the Cartesian grids are used in the remains of the flow field.The flow solver of the Euler and N S equations is performed by a conventional algorithm,including the finite volume method and the Runge Kutta time stepping scheme.The grid adaptation and the flow solver achieve reasonable efficiency and accuracy with minimum computer resources.Based on the above approach,the numerical analysis of flows around the single element and the multi element airfoils is given.The numerical results presented show the flexibility of this approach and the accuracy attainable by the solution based refinement. [
出处
《计算物理》
CSCD
北大核心
2002年第6期557-560,共4页
Chinese Journal of Computational Physics
基金
航空科学基金 (98A5 3 0 0 5 )
西北工业大学博士论文创新基金资助项目