期刊文献+

Graph-Based Chinese Word Sense Disambiguation with Multi-Knowledge Integration 被引量:1

下载PDF
导出
摘要 Word sense disambiguation(WSD)is a fundamental but significant task in natural language processing,which directly affects the performance of upper applications.However,WSD is very challenging due to the problem of knowledge bottleneck,i.e.,it is hard to acquire abundant disambiguation knowledge,especially in Chinese.To solve this problem,this paper proposes a graph-based Chinese WSD method with multi-knowledge integration.Particularly,a graph model combining various Chinese and English knowledge resources by word sense mapping is designed.Firstly,the content words in a Chinese ambiguous sentence are extracted and mapped to English words with BabelNet.Then,English word similarity is computed based on English word embeddings and knowledge base.Chinese word similarity is evaluated with Chinese word embedding and HowNet,respectively.The weights of the three kinds of word similarity are optimized with simulated annealing algorithm so as to obtain their overall similarities,which are utilized to construct a disambiguation graph.The graph scoring algorithm evaluates the importance of each word sense node and judge the right senses of the ambiguous words.Extensive experimental results on SemEval dataset show that our proposed WSD method significantly outperforms the baselines.
出处 《Computers, Materials & Continua》 SCIE EI 2019年第7期197-212,共16页 计算机、材料和连续体(英文)
基金 The research work is supported by National Key R&D Program of China under Grant No.2018YFC0831704 National Nature Science Foundation of China under Grant No.61502259 Natural Science Foundation of Shandong Province under Grant No.ZR2017MF056 Taishan Scholar Program of Shandong Province in China(Directed by Prof.Yinglong Wang).
  • 相关文献

参考文献4

二级参考文献31

  • 1陈文亮,朱靖波,朱慕华,姚天顺.基于领域词典的文本特征表示[J].计算机研究与发展,2005,42(12):2155-2160. 被引量:22
  • 2卢志茂,刘挺,李生.统计词义消歧的研究进展[J].电子学报,2006,34(2):333-343. 被引量:28
  • 3卢志茂,刘挺,李生.基于无指导机器学习的全文词义自动标注方法[J].自动化学报,2006,32(2):228-236. 被引量:2
  • 4Navigli R. Word sense disambiguation: a survey. ACM Com- puting Surveys, 2009, 41(2): 1011-1069.
  • 5Agirre E, de Lacalle O L, Soroa A. Knowledge-based WSD and specific domains: performing better than generic super- vised WSD. In: Proceedings of the 2009 International Joint Conference on Artificial Intelligence 2009. Pasadena, USA: Morgan Kaufmann Publishers Inc, 2009. 1501-1506.
  • 6Magnini B, Strapparava C, Pezzulo G, Gliozzo A. The role of domain information in word sense disambiguation. Natu- ral Language Engineering, 2002, 8(4): 359-373.
  • 7Navigli R, Ponzetto S P. BabelNet: the automatic construc- tion, evaluation and application of a wide-coverage multi- lingual semantic network. Artitcial Intelligence, 2012, 193: 217-250.
  • 8Stevenson M, Agirre E, Soroa A. Exploiting domain in- formation for word sense disambiguation of medical doc- uments. Journal of the American Medical Informatics Asso- ciation, 2011, 19(2): 235-240.
  • 9Agirre E, de Lacalle O L, Fellbaum C, Hsieh S K, Tesconi M, Monachini M, Vossen P, Seqers R. SemEval-2010 task 17: all-words word sense disambiguation on a specific do- main. In: Proceedings of the 2009 NAACL HLT Workshop on Semantic Evaluations: Recent Achievements and Fhlture Directions. Boulder, Colorado: Association for Computa- tional Linguistics, 2009. 123-128.
  • 10Agirre E, Soroa A. Personalizing PageRank for word sense disambiguation. In: Proceedings of the 12th Conference of the European Chapter of the ACL. Stroudsburg: Associa- tion for Computational Linguistics, 2009. 33-41.

共引文献37

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部