期刊文献+

Photodissociation Branching Ratios of 12C^16O from 108000 cm^-1 to 113200 cm^-1 Measured by Two-Color VUV-VUV Laser Pump-Probe Time-Slice Velocity-Map Ion Imaging Method:Observation of Channels for Producing O(1D)

下载PDF
导出
摘要 The photoabsorption and photodissociation of carbon monoxide(CO)in the vacuum ultraviolet(VUV)region is one of the most important photochemical processes in the interstellar medium,thus it has attracted numerous experimental and theoretical studies.Here,we employed the two-color VUV-VUV laser pump-probe time-slice velocity-map ion imaging method to measure the relative branching ratios[C(3P0)+O(1D)]/{[C(3P0)+O(3P)]+[C(3P0)+O(1D)]}and[C(3P2)+O(1D)]/{[C(3P2)+O(3P)]+[C(3P2)+O(1D)]}in the VUV photoexcitation energy range of 108000-113200 cm^−1.Here,one tunable VUV laser beam is used to excite CO to speci c rovibronic states,and a second independently tunable VUV laser beam is used to state-selectively ionize C(3P0)and C(3P2)for detection.State-selective photoionization through the 1VUV+1UV/visible resonance-enhanced multiphoton ionization scheme has greatly enhanced the detection sensitivity,which makes many new weak absorption bands observable in the current study.The branching ratio measurement shows that the spin-forbidden channels C(3P0)+O(1D)and C(3P2)+O(1D)only open at several discrete narrow energy windows.This might be caused by certain accidental resonanceenhanced spin-orbit interactions between the directly excited Rydberg states and valence states of triplet type which nally dissociate into the spin-forbidden channels.
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第1期91-100,共10页 化学物理学报(英文)
基金 the National Natural Science Foundation of China(No.21803072) the Program for Young Outstanding Scientists of Institute of Chemistry,Chinese Academy of Science(ICCAS),and Beijing National Laboratory for Molecular Sciences(BNLMS). the National Aeronautics and Space Administration Award #80NSSC18K0592 and National Science Foundation under CHE-1763319.Yu Song William.M.Jackson gratefully acknowledge the support of NSF under grants CHE-1301501 and AST-1410297.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部