摘要
Joint inversion based on a correlation constraint utilizes a linear correlation function as a structural constraint.The linear correlation function contains a denominator,which may result in a singularity as the objective function is optimized,leading to an unstable inversion calculation.To improve the robustness of this calculation,this paper proposes a new method in which a sinusoidal correlation function is employed as the structural constraint for joint inversion instead of the conventional linear correlation function.This structural constraint does not contain a denominator,thereby preventing a singularity.Compared with the joint inversion method based on a cross-gradient constraint,the joint inversion method based on a sinusoidal correlation constraint exhibits good performance.An application to actual data demonstrates that this method can process real data.
基于相关性约束的联合反演方法使用线性相关函数作为结构约束项,而线性相关函数中含有分母,在求解过程中可能出现奇点,从而导致反演计算不稳定。为提高反演计算的稳定性,本文提出改进措施:利用基于正弦函数的相关函数代替常规的线性相关函数作为联合反演的结构约束项,该结构约束项不含分母,能有效避免出现奇点。设计模型试验,与基于交叉梯度约束的联合反演方法对比,证明了基于正弦函数相关性约束的联合反演方法的有效性;又将本文方法应用于联合反演实际航空重力梯度数据和航磁数据,得到的磁性分布和密度分布具有较强的结构相关性,验证了本文方法具有处理实际数据的能力。
基金
supported by the National Key Research and Development Project of China(No:2017YFC0602201)