期刊文献+

基于四元数小波变换和自适应神经网络的图像融合处理 被引量:3

Fusion Algorithm of Image Enhancement Based on Quaternion Wavelet Transform and Adaptive Neural Network
下载PDF
导出
摘要 夜晚环境下,同一物体的可见光图像、红外图像以及环境噪声等特征信息往往融合在一起,从而导致所提取的图像清晰度变差,边缘模糊等。为改善夜间图像的可视化效果,提出了一种基于四元数小波变换和自适应神经网络的红外与可见光图像融合算法。该算法首先对夜间原图像中的弱光信息进行动态压缩和自适应增强;再利用四元数小波变换对增强后图像的可见光、红外部分进行分解;在低频部分,取系数最大的融合算法;在高频部分,采用神经网络参数自适应融合算法;最后,采用四元数小波逆变换得到融合图像。理论与实验表明,该算法能很好地改善夜视场景下同一目标图像的提取效果。 The visible light image,infrared image and ambient noise from the same object are often fused together in night environment,which results in the deterioration of image definition and blurred edges.In order to improve the visual effect of the night images,an infrared and visible image fusion algorithm based on quaternion wavelet transform and adaptive neural network is proposed.Firstly,the algorithm dynamically compresses and adaptively enhances the weak light information in the night original image;secondly,the visible and infrared parts of the enhanced image are decomposed by using quaternion wavelet transform,the fusion algorithm with the largest coefficient is adopted in low frequency part and the parameter adaptive fusion algorithm of neural network is used in high frequency part;finally,the enhanced image is obtained by using the inverse transform of the quaternion wavelet.The theoretical and experimental results show that the algorithm can improve the extraction effect of the same target image in night condition.
作者 马淑兰 常莉红 马保科 MA Shulan;CHANG Lihong;MA Baoke(School of Mathematics and Computer Science,Ningxia Normal University,Guyuan,Ningxia 756000,China;School of Applied Technology,Xi'an Polytechnic University,Xi'an,Shaanxi 710048,China)
出处 《西安石油大学学报(自然科学版)》 CAS 北大核心 2020年第2期113-119,共7页 Journal of Xi’an Shiyou University(Natural Science Edition)
基金 国家自然科学基金青年科学基金项目(11701306) 宁夏高等学校一流学科建设(教育学学科)资助项目(NXYLXK2017B11) 宁夏固原市科技计划项目(2019GKGY041) 宁夏自治区重点研发计划项目(引才专项)资助(2019BEB04021)。
关键词 图像融合 四元数小波变换 方向滤波 自适应神经网络 image fusion quaternion wavelet transform guided image filtering adaptive neural network
  • 相关文献

参考文献3

二级参考文献20

  • 1mrici T, Dikbas S, Altunbasak Y. A histogram modification framework and its application for image contrast enhancement [J]. IEEE Transactions on Image Processing, 2009, 18(9): 1921-1935.
  • 2Kim Y T. Contrast enhancement using brightness preserving bi-histogram equalization [J]. IEEE Transactions on Consumer Electronics, 1997, 43( 1): 1-8.
  • 3Wang Yu, Chen Qian, Zhang Baomin. Image enhancement based on equal area dualistic sub-image histogram equalization method [J]. IEEE Transactions on Consumer Electronics, 1999, 45(1): 68-75.
  • 4Ooi C H, Isa N A M. Adaptive contrast enhance-mentmethods with brightness-Presserving [J]. IEEE Transactions on Consumer Electronics, 2010, 56(4) 2543-255 1.
  • 5Murahira K, Kawakami T, Taguehi A. Modified histogram equalization for image contrast enhancement [C]// Communications, Control and Signal Processing (ISCCSP), 2010 4th International Symposium on. IEEE, Limassol, 2010: 1-5.
  • 6Wang Qing, Ward R K. Fast image/video contrast enhancement based on weighted thresholded histogramequalization [J]. IEEE Transactions on Consumer Electronics, 2007, 53(2): 757-764.
  • 7Chen S D, Ramli A R. Minimum mean brightness error bi-histogram equalization in contrast enhancement [J]. IEEE Transactions on Consumer Electronics, 2003, 49(4) 1310-1319.
  • 8Agaian S S, Silver B, Panetta K A. Transform coefficient histogram-based image enhancement algorithms using contrast entropy [J]. IEEE Transactions on Image Processing, 2007, 16(3): 741-758.
  • 9苗启广,王宝树.基于局部对比度的自适应PCNN图像融合[J].计算机学报,2008,31(5):875-880. 被引量:39
  • 10李雪梅,张素琴.基于仿生理论的几种优化算法综述[J].计算机应用研究,2009,26(6):2032-2034. 被引量:12

共引文献21

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部