期刊文献+

Single color image super-resolution using sparse representation and color constraint 被引量:2

下载PDF
导出
摘要 Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期266-271,共6页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61761028)。
  • 相关文献

参考文献3

二级参考文献22

  • 1KER S,KANADE T. Limits on super-resolution and how to break them[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(09):1167-1183.
  • 2PARK S C,PARK M K,KANG M G. Super-resolution image construction:a technical overview[J].IEEE Signal Processing Magazine,2003,(03):21-36.
  • 3KEYS R G. Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics Speech and Signal Processng,1981,(06):1153-1160.
  • 4MARQUINA A,OSHER S J. Image super-resolution by TV-regularization and Bregman iteration[J].Journal of Scientific Computing,2008,(03):367-382.doi:10.1007/s10915-008-9214-8.
  • 5DAIS Y,HAN M,XU W. Soft edge smoothness prior for alpha channel super resolution[A].Washington,DC:IEEE Computer Society,2007.1-8.
  • 6SUN J,XU Z B,SHUM H-Y. Image super-resolution using gradient profile prior[A].Washington,DC:IEEE Computer Society,2008.1-8.
  • 7FREEMAN W T,PASZTOR E C,CARMICHAEL O T. Learning low-level vision[J].International Journal of Computer Vision,2000,(01):25-47.doi:10.1023/A:1026501619075.
  • 8ElAD M,DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of single image[J].Computer Journal,2007,(01):15-30.
  • 9CHANG H,YEUNG D-Y,XIONG Y-M. Super-resolution through neighbor embedding[A].Washington,DC:IEEE Computer Society,2004.275-282.
  • 10YANG J C,WRIGHT J,HUANG T S. Image super-resolution via sparse representation[J].IEEE Transactions on Image Processing,2010,(11):2861-2873.

共引文献10

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部