期刊文献+

A review of underlying topography estimation over forest areas by In SAR: Theory, advances, challenges and perspectives 被引量:7

InSAR林下地形测绘方法:理论、进展、挑战与前景
下载PDF
导出
摘要 The paramount importance and multi-purpose applications of underlying topography over forest areas have gained widespread recognition over recent decades, bringing about a variety of experimental studies on accurate underlying topography mapping. The highly spatial and temporal dynamics of forest scenarios makes traditional measuring techniques difficult to construct the precise underlying topography surface. Microwave remote sensing has been demonstrated as a promising technique to retrieve the underlying topography over large areas within a limited period, including synthetic aperture radar interferometry(InSAR), polarimetric InSAR(PolInSAR) and tomographic SAR(TomoSAR). In this paper, firstly, the main principle of digital elevation model(DEM) generation by InSAR and SAR data acquisition over forest area are introduced. Following that, several methods of underlying topography extraction based on InSAR, PolInSAR, and TomoSAR are introduced and analyzed, as well as their applications and performance are discussed afterwards. Finally, four aspects of challenge are highlighted, including SAR data acquisition, error compensation and correction, scattering model reconstruction and solution strategy of multi-source data, which needs to be further addressed for robust underlying topography estimation. 近几十年来,森林覆盖区林下地形的重要意义与应用已得到广泛认可,许多学者对此开展了大量高精度林下地形绘图的研究。然而,森林场景的高时空动态性使得传统的测量技术难以重建精确的林下地形。微波遥感为林下地形测绘带来了契机,其能在有限的时间内大范围提取、重建林下地形,其中包括合成孔径雷达干涉测量(InSAR),极化合成孔径雷达干涉测量(PolInSAR)和层析SAR(TomoSAR)。本文首先介绍了基于InSAR生成数字高程模型(DEM)的主要原理以及森林区域SAR数据的获取。随后,综合分析了基于InSAR,PolInSAR和TomoSAR的林下地形提取方法,并讨论其相关的应用及反演性能。最后,重点介绍了未来高精度林下地形测绘所面临的四个方面的挑战,包括SAR数据采集,误差补偿和校正,散射模型重建与解译以及多源数据融合的解决方案与策略。
作者 XIE Yan-zhou ZHU Jian-jun FU Hai-qiang WANG Chang-cheng 谢雁洲;朱建军;付海强;汪长城(School of Geosciences and Info-Physics,Central South University,Changsha 410083,China)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期997-1011,共15页 中南大学学报(英文版)
基金 Projects(41820104005,41531068,41842059,41904004)supported by the National Natural Science Foundation of China。
关键词 underlying topography microwave remote sensing INSAR POLINSAR TomoSAR 林下地形 微波遥感 干涉SAR 极化干涉SAR 层析SAR
  • 相关文献

参考文献2

二级参考文献35

  • 1李珊珊,李志伟,胡俊,孙倩,俞晓莹.SBAS-InSAR技术监测青藏高原季节性冻土形变[J].地球物理学报,2013,56(5):1476-1486. 被引量:113
  • 2李德仁,廖明生,王艳.永久散射体雷达干涉测量技术[J].武汉大学学报(信息科学版),2004,29(8):664-668. 被引量:132
  • 3张秋玲,王岩飞.利用多基线数据融合提高分布式卫星InSAR系统的干涉相位精度[J].电子与信息学报,2006,28(11):2011-2014. 被引量:9
  • 4吴一戎,洪文,王彦平.极化干涉SAR的研究现状与启示[J].电子与信息学报,2007,29(5):1258-1262. 被引量:51
  • 5CLOUDE S R, PAPATHANASSIOU K P. Polarimetric SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 155l 1565.
  • 6COLIN E, TITIN-SCHNA1DER C, TABBARA W. An Interferometric Coherence Optimization Method in Radar Polarimetry for High resolution Imagery[J]. IEEE Trans actions on Geoscienee and Remote Sensing, 2006, 44(1).- 167-175.
  • 7REIGBER A, NEUMANN M, ERTEN E, etal. Multi baseline Polarimetrically Optimised Phases and Scattering Mechanisms for InSAR Applications E C~ // IEEE International Geoscience and Remote Sensing Symposium. Barcelona: IEEE, 2007: 2620-2623..
  • 8NEUMANN M, FERRO FAMIL L, REIGBER A. Multibaseline PolInSAR Coherence Modelling and Optimization~C~ // Proceeding of the IEEE International Geoseience and Remote Sensing Symposium. Barcelona.- IEEE, 2007:2624 2627.
  • 9NEUMANN M, FERRO-FAMIL L, REIGBER A. Multibaseline Polarimetric SAR Interferometry Coherence Optimization[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 93-97.
  • 10ALIPOURS, TIAMPO K F, SAMSONOV S, et al. Multibaseline PolInSAR Using RADARSAT-2 Quad-pol Data: Improvements in Interferometric Phase Analysis [J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6), 1280-1284.

共引文献471

同被引文献75

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部