期刊文献+

基于改进PSO的连续相位调制训练序列优化 被引量:2

TRAINING SEQUENCE OPTIMIZATION FOR CONTINUOUS PHASE MODULATION BASED ON MODIFIED PSO
下载PDF
导出
摘要 用于连续相位调制信号同步的最优训练序列具有自相关函数旁瓣较高的特点,增加了序列起始位置的误检概率。针对该问题,提出基于多约束条件的粒子群算法,搜索旁瓣较低且同步参数估计性能仍然保持最优的训练序列。通过在粒子群算法中引入基因突变,使其尽可能收敛于全局最优,搜索到的训练序列其自相关函数旁瓣得到有效降低,且该搜索方法可以扩展到任意训练序列长度。仿真结果表明,和传统最优训练序列相比,该训练序列能够降低帧起始位置的误检,同时同步参数的估计性能不下降。误码率性能测试表明,该序列的解调性能优于传统最优训练序列约2 dB。 The optimal training sequence for the synchronization of continuous phase modulation has the feature of high side lobe,which increases the false detection probability of the initial position of the sequence.Aiming at this problem,this paper proposes a particle swarm optimization(PSO)based on multiple constraints,which searches for training sequences with low side lobes and still maintains the optimal performance of synchronous parameter estimation.By introducing gene mutation into PSO,it converged to the global optimum as much as possible.The side-lobe of the searched training sequence was effectively reduced,and the search method could be extended to any length of the training sequence.The simulation results show that compared with the traditional optimal training sequence,the training sequence can reduce the false detection of the frame initial position.Meanwhile,the estimation performance of synchronization parameters does not decrease.The bit error rate(BER)performances test shows that the demodulation performance of this sequence is better than the traditional optimal training sequence about 2 dB.
作者 王乐 Wang Le(School of Information Science and Engineering,North China University of Technology,Beijing 100144,China)
出处 《计算机应用与软件》 北大核心 2020年第7期227-231,共5页 Computer Applications and Software
基金 2019北京市属高校基本科研业务费项目(110052971921/011)。
关键词 粒子群算法 遗传算法 连续相位调制 同步 最优训练序列设计 Particle swarm optimization(PSO) Genetic algorithm Continuous phase modulation Synchronization Optimal training sequence design
  • 相关文献

参考文献3

二级参考文献29

  • 1(O)zen A,Kaya I,and Soysal B.Variable step-size constant modulus algorithm employing fuzzy logic controller[J].Wireless Personal Comrnunications,2010,54(2):237-250.
  • 2Gamot R M and Mesa A.Particle swarm optimization-tabu search approach to constrained engineering optimization problems[J].WSEAS Transactions on Mathematics,2008,7(11):666-675.
  • 3Sedighizadeh D and Masehian E.Particle swarm optimization methods,taxonomy and applications[J].International Journal of Computer Theory and Engineering,2009,5(1):486-501.
  • 4Zhan Z H,Zhang J,Li Y,and Chung H S H.Adaptive particle swarm optimization[J].IEEE Transactions on Systems Man,and Cybernetics-Part B:Cybernetic s,2009,39(6):1362-1381.
  • 5Praveen Kumar Tripathi,Sanghamitra Bandyopadhyay,and Sankar Kumar Pal.Multi-Objective particle swarm optimization with time variant inertia and acceleration coefficents[J].Information Sciences,2007,177(22)5033-5049.
  • 6(O)zen A,Kaya I,and Soysal B.Design of a fuzzy based outer loop controller for improving the training performance of LMS algorithm[C].In Third International Conference on Intelligent Computing,ICIC 2007,August 21-24,Qingdao,China.2007,Vol.2:1051-1063.
  • 7Yang Chao,Guo Ye-cai,and Zhu Jie.Super-exponential iterative blind equalization algorithm based on orthogonal wavelet packet transform.Proceedings of the 9th International Conference on Signal Processing,Beijing,Oct.26-29,2008:1830-1833.
  • 8Abrar S and Nandi A K.An adaptive constant modulus blind equalization algorithm and its stochastic stability analysis[J].IEEE Signal Processing Letters,2010,17(1):55-58.
  • 9Zhang Yin-bing,Zhao Jun-wei,Guo Ye-cai,and Li Jin-ming.A constant modulus algorithm for blind equalization in a-stable noise[J].Applied Acoustics,2010,71(7):653-660.
  • 10Guo Ye-cai,Zhao Xue-qing,Liu Zhen-xin,and Gao Min.A modified T/2 fractionally spaced coordinate transformation blind equalization algorithm[J].International Journal Communications,Network and System Sciences,2010,3(12):183-189.

共引文献16

同被引文献41

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部