期刊文献+

理性公平的秘密共享方案 被引量:3

Rational Fair Secret Sharing Scheme
下载PDF
导出
摘要 理性秘密共享是将自利的理性用户引入到传统秘密共享中,力图在现实环境中实现公平的秘密重构,使得所有用户均能获得共享秘密.然而,由于忽略了理性用户的自利性行为,现有理性秘密共享的公平性定义允许出现用户不发送子秘密也能获得共享秘密的不公平情形.这导致在使用以该定义为指导所设计的理性秘密共享方案时,并不能确保所有用户均能获得共享秘密;甚至还会出现发送错误子秘密欺骗其他用户,导致其他用户将重构出的虚假的共享秘密视为真实秘密的极端情形.为解决该问题,本文结合秘密共享的存取结构,形式化定义了秘密共享的理性公平性.并以此为指导,通过在秘密分发阶段为每个理性用户发送大量虚假子秘密,使得理性用户难以准确猜测出真实共享子秘密的方法,设计一个混淆激励机制,并提出一个理性公平的秘密共享方案.理论分析和大量实验表明,该方案能有效地约束理性用户在秘密重构阶段的自利性行为,确保所有用户能获得真实的共享秘密,高效地实现公平的秘密共享. With the development of communication technologies,the advanced technologies like cloud computing and IoT(Internet of Things)are emerging,which bring convenience and become part of our daily life.Unfortunately,when enjoying the convenient life,the users’privacy may disclose because they need to provide some individual sensitive data.To protect the users’privacy effectively,the cryptography participating in multi-user has attracted more attention,especially secret sharing.Secret sharing is one of the most common and classical distributed cryptographic schemes,which allows the certain number of users can obtain the secret together,but any subset of users of size less than the prescribed number cannot obtain the secret even they collude with others.In traditional secret sharing,the users are regarded as either honest or malicious.Honest users follow the prescribed scheme faithfully,whereas malicious users behave in arbitrary manners.However,in real applications,the users are selfish and always try to maximize their profits,which coincides with the selfish characteristic of rational users in game theory.Under this circumstance,rational secret sharing is proposed by introducing selfish users into traditional secret sharing,which assumes that the users prefer to obtain the secret above all else,otherwise prefer the fewest number of other users to obtain the secret.The purpose is to realize the fair secret reconstruction in real applications.Unfortunately,when directly adopting the existing rational secret sharing schemes,some unfair solutions arise,which lead that some of the users reconstruct the secret but not send the shares,whereas the others cannot obtain the secret after sending the shares.More seriously,some of the users can cheat the other users into viewing a fake secret as the real.The crucial reason is that,the users’selfish behaviors are not considered completely in the existing fairness definition of rational secret sharing,and the existing schemes are devised under the guidance of this fairness definition.To address this problem,this paper formalizes rational fairness of secret sharing by combining it with the minimum access structure,and demonstrates that the proposed definition allows the users to reconstruct the real secret only when both of them send the shares honestly.Furthermore,to show that the proposed fairness definition is meaningful,an incentive obfuscation mechanism is devised and an advanced rational secret sharing scheme is presented.In the proposal,a great quantity of fake shares are generated for rational users to make them not able to identify the real one,and the users are punished by not receiving any shares in the future when they do not send the shares honestly.In this way,none of users deviates from the scheme prescribed,thereby realizing the fair secret reconstruction.Through the comparisons of the existing schemes in applicable scenarios,reconstruction rounds,requirements on trust users,computation of rational users’payments,and other complicated cryptographic tools,the advantages of our scheme are analyzed to illustrate the usability.Additionally,the extensive experiments illustrate that the computation overhead and communication cost of the presented scheme are limited,indicating that our scheme can realize the fair secret reconstruction efficiently.
作者 刘海 李兴华 田有亮 雒彬 马建峰 彭长根 LIU Hai;LI Xing-Hua;TIAN You-Liang;LUO Bin;MA Jian-Feng;PENG Chang-Gen(School of Information,Guizhou University of Finance and Economics,Guiyang 550025;International Joint Research Center for Data Science and High-Performance Computing,Guizhou University of Finance and Economics,Guiyang 550025;State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025;School of Cyber Engineering,Xidian University,Xi′an 710071;State Key Laboratory of Integrated Services Networks,Xidian University,Xi′an 710071;College of Computer Science and Technology,Guizhou University,Guiyang 550025)
出处 《计算机学报》 EI CSCD 北大核心 2020年第8期1517-1533,共17页 Chinese Journal of Computers
基金 国家自然科学基金(U1708262,U1736203,U1836205,61772008) 国家重点研发计划(2017YFB0801805) 贵州省科技计划项目(黔科合基础[2020]1Y265) 贵州财经大学校级科研基金项目(2019XYB17)资助。
关键词 理性秘密共享 理性公平 混淆 存取结构 激励机制 rational secret sharing rational fairness obfuscation access structure incentive mechanism
  • 相关文献

参考文献1

二级参考文献18

  • 1Blakley G R. Safeguarding cryptographic keys[C]//Proc of the National Computer Conference, American Federation of Information Processing Societies Proceedings. Arlington: IEEE Computer Society, 1979: 313- 317.
  • 2Shamir A. How to share a secret [J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 3Halpern J, Teague V. Rational secret sharing and multipartycomputation: Extended abstract [C]// Proc of 36th Annual ACM Symposium on Theory of Computing (STOC). Chicago: ACM Press, 2004: 623-632.
  • 4Katz J. Bridging game theory and cryptography: Recent results and future directions[C]//Proc of Theory of Cryptogra- phy Conference 2008. New York: Springer-Verlag, 2008, 4948: 251-272.
  • 5Lysyanskaya A, Triandopoulos N. Rationality and adversarial behavior in multiparty computation[C]//Proc of CRYPTO 2006. Heidelberg: Springer-Verlag, 2006, 4117: 180-197.
  • 6Kol G, Naor M. Games for exchanging information[C]// Proc of STOC 2008. New York: ACM Press, 2008: 423-432.
  • 7Kol G, Naor M. Cryptography and game theory: Designing protocols for exchanging information[C//Proc of TCC 2008. Heidelberg: Springer-Verlag, 2008, 4948: 320-339.
  • 8Fuchsbauer G, Katz 1, Naccache D. Efficient Rational Secret Sharing in Standard Communication Networks[C]//Proc of TCC 2010. Zurich: Springer, 2010: 419-436.
  • 9Maleka S, Shareef A, Pandu R C. Rational secret sharing with repeated games[C]// Proc of ISPEC 2008. Sydney: Springer-Verlag, 2008: 334-346.
  • 10Ong S J, Parkes D V, Rosen, et al. Fairness with an honest Minority and a rational majority[C]//Proc of TCC 2009. San Francisco: Springer-Verlag, 2009: 36-53.

共引文献7

同被引文献14

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部