摘要
微粒陷阱是抑制气体绝缘输电线路(gasinsulated transmission line,GIL)金属微粒污染物的重要措施,但对于直流GIL,微粒陷阱的设计仍缺乏明确的指导原则,且鲜有针对微粒陷阱的理论研究。该文研究直流下微粒陷阱的作用机制,认为电场屏蔽和碰撞能量损耗是微粒陷阱抑制球形微粒活性的主要原因,基于该机制提出一种微粒陷阱设计——楔形微粒陷阱。将楔形微粒陷阱与传统陷阱进行比较,楔形微粒陷阱可以更高效地屏蔽陷阱底部电场,并对球形微粒逃逸起阻挡作用。进一步地,基于微粒的碰撞动力学模型,考虑微粒碰撞运动的强随机性,建立陷阱捕捉概率仿真模型。通过随机释放大量球形金属微粒,模拟微粒随机碰撞运动,以捕获率为优化目标,微粒陷阱槽口宽度、倾斜度为优化变量,设计场强为边界条件,实现了对陷阱参数的定量优化。最后,通过观测实验验证了模型的可靠性。该微粒陷阱设计及优化方法可以为不同电压等级的直流GIL微粒陷阱设计提供指导。
Particle trap is an important measure to restrain the damage of moving metal particles to the insulation of DC gas insulated transmission lines(GIL).However,there is still no clear guiding principle for the design of particle trap in DC GIL,and there is little theoretical research on particle trap.In this paper,the mechanism of particle trap was studied,it was considered that electric field shielding and collision energy loss are the main reasons for particle trap to inhibit spherical particle activity.Based on this mechanism,a particle trap design,wedge-shaped particle trap,was proposed.Compared with traditional particle trap,the results show that wedge-shaped particle trap can shield the electric field at the bottom of the trap more efficiently and effectively,and can block spherical particles escape.Furtherly,a probabilistic trap capture simulation model was established based on the collision dynamics model of particles and the strong randomness of particle collision motion.A large number of spherical metal particles were randomly released to simulate the random collision motion of particles,and the trap parameters were quantitatively optimized by taking the capture rate as the optimization target,the width and inclination of the slot of the trap as the optimization variables,and the design field strength as the boundary condition.At last,the validity of the simulation model and the simulation result was proved by the validation experiment.Therefore,the particle trap design optimization method can provide guidance for the design of DC GIL particle traps with different voltage levels.
作者
王健
常亚楠
王靖瑞
胡琦
梁瑞雪
李庆民
WANG Jian;CHANG Yanan;WANG Jingrui;HU Qi;LIANG Ruixue;LI Qingmin(State Key Lab of Altermate Electrical Power System with Renewable Energy Sources(North China Eletric Power University),Changping District,Beijing 102206,China;Key Laboratory of high voltage and EMC,BEIJING(North China Electric Power University),Changping District,Beijing 102206,China)
出处
《中国电机工程学报》
EI
CSCD
北大核心
2020年第15期5050-5060,共11页
Proceedings of the CSEE
基金
国家自然科学基金项目(51737005,51807060)
北京市自然科学基金项目(3192036)
中央高校基本科研业务费专项资金(2018MS165)。
关键词
球形金属微粒
楔形微粒陷阱
捕获机制
随机性
设计优化
spherical metallic particle
wedge-shaped particle trap
capture mechanism
randomness
designing optimization