摘要
[目的/意义]随着跨学科研究的不断深入与发展,从数量庞大的科学文献中挖掘对于目标学科来说具有较大合作可能性的跨学科相关知识,有助于促进学科间知识的融合,从而进一步推动学科的创新性发展。[方法/过程]提取目标学科节点文献-其跨学科参考文献-跨学科参考文献关键词关系数据。以跨学科参考文献关键词被目标学科引用的强度,测定其与目标学科的相关性;以该关键词在目标学科中作为作者标引关键词出现的频次,测定其知识输入新颖程度。两者结合,构建学科相关新颖性指数(IDN指数),计算跨学科引文关键词在目标学科中的新颖且相关程度,识别在目标学科具有较大合作潜力的跨学科相关知识。[结果/结论]以《中国图书馆学报》《情报学报》和《图书情报工作》2018年的载文及其参考文献为实证样本,发现IDN指数能从引文关键词中有效识别与图书情报学科具有较高合作潜能的跨学科知识。
[Purpose/Significance]With the continuous deepening and development of interdisciplinary research,mining interdisciplinary related knowledge that has a greater possibility of cooperation with target discipline from a large amount of scientific literature is helpful to promote the integration of knowledge from different disciplines,thereby promoting the innovative development of courses.[Method/Process]Target subject node literature-interdisciplinary reference-interdisciplinary reference keywords relationship data were extracted.The correlation between interdisciplinary citation keywords and target discipline is measured by the intensity of the interdisciplinary citation keywords cited by the target discipline;the frequency of interdisciplinary reference keywords appearing as literature author indexing keywords in the target subject is used to determine the knowledge-input novelty of the keywords.Combining the two,the paper constructed the discipline-related novelty index(IDN index)and calculated the degree of novelty and relevance of the interdisciplinary citation keywords in the target subject,identifying interdisciplinary related knowledge that has greater potential for collaboration in the target discipline.[Result/Conclusion]Taking the papers and references published in Journal of Library Science in China,Journal of the China Society for Scientific and Technical Information,and Library and Information Service in 2018 as empirical samples,the paper found that IDN index could effectively identify interdisciplinary knowledge with high potential for cooperation with the library and information science from citation keywords.
作者
杜德慧
李长玲
相富钟
牌艳欣
Du Dehui;Li Changling;Xiang Fuzhong;Pai Yanxin(Science and Technology Information Research Institute,Shandong University of Technology,Zibo 255049)
出处
《情报杂志》
CSSCI
北大核心
2020年第9期189-194,共6页
Journal of Intelligence
基金
国家社会科学基金重点项目“跨学科潜在知识生长点识别与创新趋势预测研究”(编号:19ATQ006)研究成果之一。