期刊文献+

EMSC:a joint multicast routing,scheduling,and call admission control in multi-radio multi-channel WMNs

原文传递
导出
摘要 This paper deals with the problem of joint multicast routing,scheduling,and call admission control in multiradio multi-channel wireless mesh networks.To heuristically solve this problem,we propose a cross-layer algorithm named“extended MIMCR with scheduling and call admission control phases(EMSC)”.Our model relies on the on-demand quality of service(QoS)multicast sessions,where each admitted session creates a unique tree with a required bandwidth.The proposed scheme extends the MIMCR algorithm to fairly schedule multiple non-interfering transmissions in the same time slot.It also exploits a call admission control mechanism to protect the QoS requirements of the multicast traffics.EMSC reduces the number of occupied time slots,with consideration of spatial reuse,both Intra-flow and Inter-flow interferences,and selecting the minimum-interference minimum-cost paths.This subsequently leads to better radio resource utilization and increases the network throughput.Simulation results show that the proposed algorithm outperforms the other algorithms and improves the network performance.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2020年第5期165-180,共16页 中国计算机科学前沿(英文版)
  • 相关文献

参考文献1

二级参考文献28

  • 1Sutton R S, Barto A G. Reinforcement learning: an introduction. US: MIT Press, 1998.
  • 2Stidham S J. Applied probability in operations research: a retrospec- tive//Preprint: analysis, design, and control of queueing systems. Op-eration Research, 2002, 50(1): 197-216.
  • 3Thompson M S, Mackenzie A B, Dasilva L A, Hadjichristofi G. A mobile ad hoc networking competition: a retrospective look at the MANIAC challenge. IEEE Communications Magazine, 2012, 50(7): 121-127.
  • 4Li X, Falcon R, Nayak A, Stojmenovic I. Servicing wireless sensor networks by mobile robots. IEEE Communications Magazine, 2012, 50(7): 147-154.
  • 5Xue Y, Lin Y, Cai H, Chi C. Autonomic joint session scheduling strategies for heterogeneous wireless networks. In: Proceedings of the 2008 IEEE Wireless Communications and Networking Confer- ence. 2008. 2045-2050.
  • 6Song M, Xin C, Zhao Y, Cheng X. Dynamic spectrum access: from cognitive radio to network radio. IEEE Wireless Communications, 2012, 19(1): 23-29.
  • 7Mao J, Xiang F, Lai H. RL-based superframe order adaptation algo- rithm for IEEE 802.15.4 networks. In: Proceedings of the 2009 Chi- nese Control and Decision Conference. 2009, 4708-4711.
  • 8Shah K, Kumar M. Distributed independent reinforcement learning (DIRL) approach to resource management in wireless sensor net- works. In: Proceedings of the 4th International Conference on Mobile Ad-hoc and Sensor Systems. 2007, 1-9.
  • 9Niu J. Self-learning scheduling approach for wireless sensor network. In: Proceedings of/he 2010 International Conference on Future Com- puter and Communication. 2010, 253-257.
  • 10Kaelbling L P, Littman M L, Wang X. Reinforcement/earning: a sur- vey. Journal of Artificial Intelligence Research, 1996, 4:237-285.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部