摘要
The open and broadcast nature of wireless channels leads to the inherent security problem of information leakage in wireless communication.We can utilize endogenous security functions to resolve this problem.The fundamental solution is channel-based mechanisms,like physical layer secret keys.Unfortunately,current investigations have not fully exploited the randomness of wireless channels,making secret key rates not high.Consequently,user data can be encrypted by reducing the data rate to match the secret key rate.Based on the analysis of the endogenous wireless security principle,we proposed that the channel-based endogenous secret key rate can nearly match the maximum data rate in the fast-fading environments.After that,we validated the proposition in an instantiation system with multiple phase shift keying(MPSK)inputs from the perspectives of both theoretical analysis and simulation experiments.The results indicate that it is possible to accomplish the onetime pad without decreasing the data rate via channelbased endogenous keys.Besides,we can realize highspeed endogenously secure transmission by introducing independent channels in the domains of frequency,space,or time.The conclusions derived provide a new idea for wireless security and promote the application of the endogenous security theory.
基金
funded by the National Key R&D Program of China under Grant 2017YFB0801903
the National Natural Science Foundation of China under Grant 61871404,61701538,61521003
Doctoral Fund of Ministry of Education of China under Grant 2019M663994。