期刊文献+

Study of Texture Segmentation and Classification for Grading Small Hepatocellular Carcinoma Based on CT Images 被引量:4

原文传递
导出
摘要 To grade Small Hepatocellular Car Cinoma(SHCC)using texture analysis of CT images,we retrospectively analysed 68 cases of Grade II(medium-differentiation)and 37 cases of Grades III and IV(high-differentiation).The grading scheme follows 4 stages:(1)training a Super Resolution Generative Adversarial Network(SRGAN)migration learning model on the Lung Nodule Analysis 2016 Dataset,and employing this model to reconstruct Super Resolution Images of the SHCC Dataset(SR-SHCC)images;(2)designing a texture clustering method based on Gray-Level Co-occurrence Matrix(GLCM)to segment tumour regions,which are Regions Of Interest(ROIs),from the original and SR-SHCC images,respectively;(3)extracting texture features on the ROIs;(4)performing statistical analysis and classifications.The segmentation achieved accuracies of 0.9049 and 0.8590 in the original SHCC images and the SR-SHCC images,respectively.The classification achived an accuracy of 0.838 and an Area Under the ROC Curve(AUC)of 0.84.The grading scheme can effectively reduce poor impacts on the texture analysis of SHCC ROIs.It may play a guiding role for physicians in early diagnoses of medium-differentiation and high-differentiation in SHCC.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2021年第2期199-207,共9页 清华大学学报(自然科学版(英文版)
基金 supported by the National Key R&D Program of China(No.2018YFC0807500)。
  • 相关文献

参考文献4

二级参考文献55

  • 1屈有山,田维坚,冯桂兰,李英才,张薇.小波双三次插值搜索算法提高遥感图像分辨力[J].光电工程,2004,31(8):65-68. 被引量:4
  • 2陈小蔷,张俊,吴乐南.一种改进的边缘方向插值算法[J].中国图象图形学报(A辑),2004,9(6):684-687. 被引量:11
  • 3袁小华,欧阳晓丽,夏德深.超分辨率图像恢复研究综述[J].地理与地理信息科学,2006,22(3):43-47. 被引量:18
  • 4CHAN R H, CHANT F, SHEN Li-xin. Wavelet algorithms for highresolution image reconstruction [ J ]. SIAM Journal on Scientific Computing, 2003,24(4) :1408-1432.
  • 5WAHED M E. Image enhancement using second generation wavelet super resolution[ J]. International Journal of Physical Sciences, 2007, 2(6) :149- 158.
  • 6Chawla N V, Japkowicz N. Editorial: Special issue on learning from imbalanced datasets. SIGKDD Explorations, 2004, 6: 1-6.
  • 7Weiss G M. Mining with rarity: A unifying framework. SIGKDD Explor Newsl, 2004, 6: 7-19.
  • 8Japkowicz N, Holte R. Workshop report: AAAI-2000 workshop on learning from imbalanced data sets. AI Magazine, 2001, 22: 127-136.
  • 9Crammer K, Singer Y, Cristianini N, Shawe-taylor J, Williamson B. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2001, 2: 265292.
  • 10Wasikowski M, Chen X W. Combating the small sample class imbalance problem using feature selection. Knowledge and Data Engineering, IEEE Transactions on, 2010, 22: 1388-1400.

共引文献24

同被引文献18

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部