期刊文献+

Sulfide@hydroxide core–shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation 被引量:1

下载PDF
导出
摘要 Designing low-cost,easy-fabricated,highly stable and active electrocatalysts for oxygen evolution reaction(OER) is crucial for electrochemical(EC) and solar-driven photoelectrochemical(PEC) water splitting.By using a facile heating-electrodeposition method,here we fabricated a porous but crystalline Fe-doped Ni3 S2.A thin porous surface NiFe hydroxide layer(~10 nm) is then formed through OER-running.By virtue of the core Fe-doped Ni3 S2 with good conductivity and the shell NiFe hydroxide surface with good electrocatalytic activity,the core-shell nanostructure on Ni foam exhibits excellent OER activity in 1 M NaOH,needing only 195 and 230 mV to deliver 10 and 100 mA/cm^(2),respectively,much more superior to those of 216 and 259 mV for the sample deposited under normal temperature.The enhanced photo-response of the sulfide@hydroxide core-shell structure was also demonstrated,due to the efficient transfer of photo-generated carriers on the core/shell interface.More interestingly,it shows a good compatibility with Si based photoanode,which exhibits an excellent PEC performance with an onset potential of 0.86 V vs.reversible hydrogen electrode,an applied bias photon-to-current efficiency of 5.5% and a durability for over 120 h under AM 1.5 G 1 sun illumination,outperforming the state-of-the-art Si based photoanodes.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期431-440,共10页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.51672183) a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
  • 相关文献

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部