期刊文献+

孔道限域催化体系对甲烷传感器响应性能的改善 被引量:1

Improvement of response performance of methane sensor in pore limit area catalytic system
下载PDF
导出
摘要 针对传统甲烷催化传感器中催化剂活性低的问题,研制了一种定向氧化铝纳米管限域Pd体系的催化传感器,采用二次阳极氧化法制备三种孔径的Al_(2)O_(3)陶瓷基板,借助COMSOL Multiphysics软件仿真分析芯片的热场,通过浸渍法测试了催化元件的电压与温度响应特征。结果表明:300 nm孔径基板工作温度分布均匀,正面温度最大差距为4℃,应力最大可达223 MPa;传感器的灵敏度与温升梯度均随着孔径的增加,两者同步升高。Pd粒子限域在Al_(2)O_(3)的纳米孔道内部越多,所制作的传感器性能越好,说明该纳米管体系能够对甲烷产生高效催化反应。 This paper proposes a catalytic sensor with a restricted Pd system of oriented alumina nanotubes as an alternative to traditional methane catalytic sensors with lower catalyst activity.The study preparing Al_(2)O_(3)ceramic substrates with three pores using the secondary anodic oxidation method;simulating and analyze the thermal field of the chip using COMSOL Multiphysics software;and supporting the catalyst by impregnation method,and testing the voltage and temperature response characteristics of the catalytic element.The results show that the 300 nm aperture substrate has uniform working temperature distribution,with the maximum difference of 4°C for front temperature,and 223 MPa for the maximum stress;The sensor sees a synchronous increase in the sensitivity and temperature gradient with the increasing aperture.Combined with material characterization and analysis,the more Pd particles confined inside Al_(2)O_(3)is associated with the better performance of the fabricated sensor,showing that the nanotube system enables a high-efficiency catalytic reaction to methane.
作者 沈斌 宋晓阳 Shen Bin;Song Xiaoyang(School of Safety Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China;School of Materials & Chemical Engineering, Harbin Engineering University, Harbin 150001, China)
出处 《黑龙江科技大学学报》 CAS 2021年第3期295-301,共7页 Journal of Heilongjiang University of Science And Technology
基金 国家自然科学基金项目(52074111) 黑龙江省自然科学基金项目(YQ2020E034)。
关键词 Al2O3基板 催化传感器 COMSOL仿真 孔道限域 Al2O3 carrier methane sensor COMSOL simulation pore confinement
  • 相关文献

参考文献2

二级参考文献103

  • 1刘志存,于海珠.催化元件配对工艺及瓦斯检测方法优化[J].传感器技术,2005,24(2):81-82. 被引量:10
  • 2Zhang Hongquan, Study on the CO micro gas sensor with temperature and humidity compensation [ C ] //China: 6^th International Symposium on Test and Measurement ,2005:3715 - 3718.
  • 3Derouane E G, André J M, Lucas A A. Chem. Phys. Lett., 1987, 137 (4): 336.
  • 4Derouane E G, Andre J M, Lucas A A. J. Catal., 1988, 110 (1): 58.
  • 5Abouelnasr M K, Smit B. Phys. Chem. Chem. Phys., 2012, 14 (33): 11600.
  • 6Boekfa B, Pantu P, Probst M, Limtrakul J. J. Phys. Chem. C, 2010, 114 (35): 15061.
  • 7Hua B Y, Wang J, Wang K, Li X, Zhu X J, Xia X H. Chem. Commun., 2012, 48 (17): 2316.
  • 8Liu X, Wang A, Wang X, Mou C Y, Zhang T. Chem. Commun., 2008, 27: 3187.
  • 9Bhide S Y, Ghosh D, Yashonath S, Ananthakrishna G. Curr. Sci. India, 2004, 87 (7): 971.
  • 10Yashonath S, Ghorai P K. J. Phys. Chem. B, 2008, 112 (3): 665.

共引文献12

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部