期刊文献+

SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS 被引量:2

下载PDF
导出
摘要 In the article,we prove that the double inequalities Gp[λ1a+(1-λ1)b,λ1 b+(1-λ1)a]A1-p(a,b)<T[A(a,b),G(a,b)]<Gp[μ1 a+(1-μ1)b,μ1b+(1-μ1)a]A1-p(a,b),Cs[λ^(2) a+(1-λ2)b,λ2 b+(1-λ2)a]A1-s(a,b)<T[A(a,b),Q(a,b)]<Cs[μ2 a+(1-μ2)b,μ2 b+(1-μ2)a]A1-p(a,b)hold for all a,b>0 with a≠b if and only ifλ1≤1/2-(1-(2/π)2/p)1/2/2,μ1≥1/2-(2p)1/2/(4 p),λ2≤1/2+(2(3/(2 s)(E(21/2/2)/π)1/s)-1)1/2/2 andμ2≥1/2+s1/2/(4 s)ifλ1,μ1∈(0,1/2),λ2,μ2∈(1/2,1),p≥1 and s≥1/2,where G(a,b)=(ab)1/2,A(a,b)=(a+b)/2,T(a,b)=∫0π/2(a2 cos2 t+b2 sin2)1/2 tdt/π,Q(a,b)=((a2+b2)/2)1/2,C(a,b)=(a2+b2)/(a+b)and E(r)=∫0π/2(1-r^(2) sin^(2))1/2 tdt.
作者 Yueying YANG Weimao QIAN Hongwei ZHANG Yuming CHU 杨月英;钱伟茂;张宏伟;褚玉明(School of Mechanical and Electrical Engineering,Huzhou Vocational&Technical College,Huzhou 313000,China;School of Continuing Education,Huzhou Vocational&Technical College,Huzhou 313000,China;School of Mathematics and Statistics,Changsha University of Science&Technology,Changsha 410014,China;Department of Mathematics,Huzhou University,Huzhou 313000,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期719-728,共10页 数学物理学报(B辑英文版)
基金 supported by the Natural Science Foundation of China(61673169,11301127,11701176,11626101,11601485)。
  • 相关文献

参考文献3

二级参考文献51

  • 1Vamanamurthy M K, Vuorinen M. Inequalities for means. J Math Anal Appl, 1994, 183(1): 155-166.
  • 2Roberts A W, Varberg D E. Convex Functions. New York: Academic Press, 1973.
  • 3Niculescu C P, Persson L E. Convex Functions and Their Applications. New York: Springer-Verlag, 2006.
  • 4Matkowski J. Convex functions with respect to a mean and a characterization of quasi-arithmetic means. Real Anal Exchange, 2003/2004, 29(1): 229-246.
  • 5Bullen P S, Mitrinovid D S, Vasid P M. Means and Their Inequalities. Dordrecht: Reidel, 1988.
  • 6Das C, Mishra S, Pradhan P K. On harmonic convexity (concavity) and application to non-linear programming problems. Opsearch, 2003, 40(1): 42- 51.
  • 7Das C, Roy K L, Jena K N. Harmonic convexity and application to optimization problems. Math Ed, 2003, 37(2): 58-64.
  • 8Kar K, Nanda S. Harmonic convexity of composite functions. Proc Nat Acad Sci India Sect A, 1992, 62(1): 77- 81.
  • 9Anderson G D, Vamanamurthy M K, Vuorinen M. Generalized convexity and inequalities. J Math Anal Appl, 2007, 335(2): 1294-1308.
  • 10Stolarsky K B. The power and generalized logarithmic means. Amer Math Monthly, 1980, 87(7): 545-548.

共引文献13

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部