摘要
为了在考虑负荷时空特性以及不健全量测的场景下实现配电网的实时、高容错状态估计,本文从时空图的角度提出一种基于时空特征图卷积网络的动态状态估计算法。首先将配电网量测数据组成三维张量;然后利用时空特征图卷积网络分别提取量测数据的空间拓扑、时间序列和节点属性上的特征信息,通过特征融合得到实时状态估计结果;最后根据状态估计结果生成虚拟量测以消除不良数据的影响。实验结果表明,本状态估计方法具有较高的鲁棒性,且准确性和计算速度均优于传统方法。研究结果可为基于机器学习的电力系统状态估计方法提供参考。
We propose a real-time state estimation method for distribution networks based on spatial-temporal feature graph convolution network(STFGCN),to address the issues of load spatial-temporal characteristics and defective measurement.Firstly,a three-dimension measurement tensor was constructed by the measurement data of distribution network.Then,the STFGCN was adopted to extract the features of spatial topology,time series and node attributes from measurement tensor,and real time estimation result was obtained through features fusion.Finally,a virtual measurement was generated to offset the interference of bad data.Numerical results clearly validate the efficiency and robustness of the proposed state estimation method compared with the traditional algorithms,which provides a valuable reference to the estimation algorithms based on machine learning.
作者
陈源奕
王玉彬
杨强
CHEN Yuanyi;WANG Yubin;YANG Qiang(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Polytechnic Institute,Zhejiang University,Hangzhou 310027,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2021年第7期2386-2395,共10页
High Voltage Engineering
基金
国家自然科学基金(51777183)
国家重点研发计划(基础研究类2017YFB0903000)。
关键词
配电网
实时状态估计
时空特征图卷积网络
负荷时空特性
不健全量测
虚拟量测
distribution network
real-time state estimation
spatial-temporal feature graph convolution network
spatial-temporal feature of load
defective measurement
pseudo measurement