摘要
本文研究了具有指定收敛速度的线性离散时间系统鲁棒跟踪设计问题。首先利用鲁棒输出调节理论描述了跟踪控制问题,再结合系统数据与强化学习实现了具有指定收敛速度的跟踪控制。学习得到的控制方案不仅保证了跟踪误差渐近收敛到零,而且具有针对不确定系统动态的鲁棒性。本文所述的指定收敛速度设计不依赖系统演化时间或精确系统模型,因此是数据驱动的。
A robust tracking control problem for linear discrete-time systems with a prescribed convergence rate is considered.The robust tracking problem is formulated by utilizing robust output regulation and is subsequently solved by reinforcement learning with integration of the prescribed convergence rate.The learned controller ensures that the tracking error asymptotically converges to zero,meanwhile it is robust to uncertain system dynamics.The proposed convergence rate design is data-driven in the sense that it does not depend on the time for the system evolution or the accurate system model.
作者
陈辞
谢立华
Chen Ci;Xie Li-hua(School of Automation,Guangdong University of Technology,Guangzhou 510006,China;Guangdong Key Laboratory of IoT Information Technology,Guangzhou 510006,China;School of Electrical and Electronic Engineering,Nanyang Technological University,Singapore 639798,Singapore)
出处
《广东工业大学学报》
CAS
2021年第6期29-34,共6页
Journal of Guangdong University of Technology
基金
国家自然科学基金资助项目(61703112,U1911401,61703112,61973087)
流程工业综合自动化国家重点实验室开放课题(2020-KF-21-02)。
关键词
强化学习
指定收敛速度
数据驱动
值迭代
跟踪控制
reinforcement learning
prescribed convergence rate
data-driven
value iteration
tracking control