期刊文献+

A novel method of determining the optimal polyhedral orientation for discrete global grid systems applicable to regionalscale areas of interest 被引量:2

原文传递
导出
摘要 The polyhedral discrete global grid system(DGGS)is a multi-resolution discrete earth reference model supporting the fusion and processing of multi-source geospatial information.The orientation of the polyhedron relative to the earth is one of its key design choices,used when constructing the grid system,as the efficiency of indexing will decrease if local areas of interest extend over multiple faces of the spherical polyhedron.To date,most research has focused on global-scale applications while almost no rigorous mathematical models have been established for determining orientation parameters.In this paper,we propose a method for determining the optimal polyhedral orientation of DGGSs for areas of interest on a regional scale.The proposed method avoids splitting local or regional target areas across multiple polyhedral faces.At the same time,it effectively handles geospatial data at a global scale because of the inherent characteristics of DGGSs.Results show that the orientation determined by this method successfully guarantees that target areas are located at the center of a single polyhedral face.The orientation process determined by this novel method reduces distortions and is more adaptable to different geographical areas,scales,and base polyhedrons than those employed by existing procedures.
出处 《International Journal of Digital Earth》 SCIE 2020年第12期1553-1569,共17页 国际数字地球学报(英文)
基金 funded by the National Key Research and Development Program of China[grant number 2018YFB0505301] the Natural Science Foundation of China[grant number 41671410].
  • 相关文献

参考文献3

二级参考文献17

共引文献174

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部