期刊文献+

结合小波变换和CLAHE的图像增强算法 被引量:14

Image enhancement algorithm based on wavelet transform and CLAHE
下载PDF
导出
摘要 针对降质图像可能存在的对比度低、光照不均、轮廓信息模糊等问题,提出一种结合小波变换和限制对比度自适应直方图均衡(CLAHE)的图像增强算法。首先,将原图像进行HSI变换得到亮度分量I,并引入基于限制对比度直方图均衡化算法对I进行亮度均衡处理得到I′;然后对I和I′进行小波分解得到对应的低频分量和不同尺度的高频分量,并采用引导滤波对高频分量进行去噪处理;提出基于区域特性测量的高频融合规则和基于图像可见度的低频融合规则,对两者的高频分量和低频分量分别进行融合;最后利用小波逆变换得到增强的亮度分量IL,并将亮度分量IL与分量H,S进行HSI逆变换得到增强图像。实验结果表明,该算法能有效提升图像的亮度和对比度,可以获得更好的图像视觉效果,并具有良好的图像保真和细节增强能力。 In view of the low contrast,uneven illumination and fuzzy contour information in degraded images,an image enhancement algorithm based on wavelet transform and CLAHE(contrast limited adaptive histogram equalization)is proposed.The original image is subjected to HSI transformation to obtain brightness components I.By introducing CLAHE algorithm,bright equalization processing for I is implemented to obtain I′.The I and I′are subjected to wavelet decomposition to obtain the corresponding low⁃frequency components and the high⁃frequency components with different scales.The guided filtering is used to carry out denoising processing for the high⁃frequency components.The high⁃frequency fusion rules based on regional characteristic measurement and the low⁃frequency fusion rules based on image visibility are proposed to fuse the high⁃frequency components and low⁃frequency components of the two respectively.The wavelet inverse transformation is adopted to obtain the enhanced brightness component IL.The HSI inverse transformation of brightness component IL and components H and S is carried out to obtain the enhanced image.The experimental results show that the algorithm can effectively improve the image brightness and contrast,obtain better image visual effect,and has good image fidelity and detail enhancement ability.
作者 张铮 王孙强 熊盛辉 胡凌辉 胡新宇 ZHANG Zheng;WANG Sunqiang;XIONG Shenghui;HU Linghui;HU Xinyu(School of Mechanical Engineering,Hubei University of Technology,Wuhan 430068,China)
出处 《现代电子技术》 2022年第3期48-51,共4页 Modern Electronics Technique
基金 国家自然科学基金项目(61976083)。
关键词 图像增强 CLAHE 小波变换 引导滤波 区域特性测量 图像可见度 亮度分量 image enhancement CLAHE wavelet transform guided filtering regional characteristic measurement image visibility brightness component
  • 相关文献

参考文献13

二级参考文献115

  • 1高战立,余桂英.一种基于Curvelet变换的彩色图像融合算法[J].中国计量学院学报,2013,24(4):419-424. 被引量:2
  • 2王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究[J].中国图象图形学报(A辑),2004,9(7):828-831. 被引量:123
  • 3王海晖,彭嘉雄.基于多小波变换的图像融合研究[J].中国图象图形学报(A辑),2004,9(8):1002-1007. 被引量:41
  • 4李加文,陈宗雨,李从心.基于函数逼近的三角函数加减速方法[J].机床与液压,2006,34(3):66-67. 被引量:16
  • 5李文峰,赵健,李志忠.井下视频图像的小波消噪加强方法[J].西北大学学报(自然科学版),2006,36(6):882-886. 被引量:6
  • 6ZHOU Z, SANG N, HU X. Global brightness and local contrast a- daptive enhancement for low illumination color image [ J]. Optik, 2013, 125(6) : 1795 - 1799.
  • 7AGAIAN S, ROOPAE1 M. New haze removal scheme and novel measure of enhancement [ C]//Proceeding of the 2013 IEEE Inter- national Conference on Cybernetics. Washington, DC: IEEE Com- puter Society, 2013:219 -224.
  • 8TAN R T. Visibility in bad weather from a single image [ C]// CVPR 2008: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2008: 1 - 8.
  • 9FATYAL R. Single image dehazing [ J]. ACM Transactions on Graph- ics, 2008, 27(3): Article No. 72.
  • 10XU H, GUO J, LIU Q, et al. Fast image dehazing using improved dark channel prior [ C]//Proceeding of the 2012 IEEE International Conference on Information Science and Technology. Washington, DC: IEEE Computer Society, 2012:663 -667.

共引文献123

同被引文献144

引证文献14

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部