期刊文献+

Broccoli seedling pest damage degree evaluation based on machine learning combined with color and shape features 被引量:1

原文传递
导出
摘要 The degree of pest damage evaluation on corps in the field environment is very important for precision spraying pesticides.In this paper,we proposed an image processing method to identify the wormholes in the image of broccoli seedlings,and then to evaluate the damage of the broccoli seedlings by pests.The broccoli seedlings were taken as the research object.The ratio of wormhole areas to broccoli seedling leaves areas(Rw)was used to describe the pest damage degree.An algorithm was developed to calculate the ratio of wormhole areas to broccoli seedling leaves areas.Firstly,broccoli seedling leaves were segmented from the background and the area of the leaves was obtained.There were some holes in segmentation results due to pest damage and other reasons.Then,a classifier based on machine learning was developed to classify the wormholes and other holes.Twenty-four features,including color features and shape features of the holes,were used to develop classifiers.After identifying wormholes from images,the area of the wormholes was obtained and the degree of pest damage to broccoli seedling was calculated.The determination coefficient(R2)between the algorithm calculated pest damage degree and manually labeled pest damage degree was 0.85.The root-mean-square error(d)was 0.02.Results demonstrated that the color and shape were able to effectively segment wormholes from leaves of broccoli seedlings and evaluate the degree of pest damage.This method could provide references for precision spraying pesticides.
机构地区 College of Engineering
出处 《Information Processing in Agriculture》 EI 2021年第4期505-514,共10页 农业信息处理(英文)
  • 相关文献

参考文献3

二级参考文献13

共引文献21

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部