期刊文献+

A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses 被引量:4

下载PDF
导出
摘要 El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to improve understanding of ENSO processes,and different models for ENSO predictions have been developed,including linear statistical models based on principal oscillation pattern(POP)analyses,convolutional neural networks(CNNs),and so on.Here,we develop a novel hybrid model,named as POP-Net,by combining the POP analysis procedure with CNN-long short-term memory(LSTM)algorithm to predict the Niño-3.4 sea surface temperature(SST)index.ENSO predictions are compared with each other from the corresponding three models:POP model,CNN-LSTM model,and POP-Net,respectively.The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise.Consequently,an improved prediction is achieved in the POP-Net relative to others.The POP-Net shows a high-correlation skill for 17-month lead time prediction(correlation coefficients exceeding 0.5)during the 1994-2020 validation period.The POP-Net also alleviates the spring predictability barrier(SPB).It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations.
出处 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期889-902,共14页 大气科学进展(英文版)
基金 supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA19060102) the National Natural Science Foundation of China[NSFC Grant Nos.41690122(41690120),and 42030410].
  • 相关文献

参考文献5

二级参考文献49

  • 1WANG Bin, WAN Hui, Jl Zhongzhen, ZHANG Xin, YU Rucong, YU Yongqiang & LIU HongtaoState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,Department of Computational Mathematics, Academy of Mathematics and System Sciences, Peking University, Beijing 100871, China.Design of a new dynamical core for global atmospheric models based on some efficient numerical methods[J].Science China Mathematics,2004,47(z1):4-21. 被引量:93
  • 2Cane MA, Zebiak SE, Dolan SC (1986) Experimental forecast of El Nifio. Nature 321:827-832.
  • 3Zebiak SE, Cane MA (1987) A model E1 Nifio/Soutbern Oscil- lation. Mon Weather Rev 115:2262-2278.
  • 4Barnett TP, Latif M, Graham Net al (1993) ENSO and ENSO- related predictability. Part I: prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J Clim 6:1545-1566.
  • 5Chen D, Zebiak SE, Busalacchi AJ et al (1995) An improved procedure for E1 Nifio forecasting: implications for predictability. Science 269:1699-1702.
  • 6Latif M, Anderson D, Barnett T et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375-14393.
  • 7Kirtman BP, Shukla J (2002) Interactive coupled ensemble: a new coupling strategy for CGCMs. Geophys Res Lett. doi:10. 1029/2002GL014834.
  • 8Zhang RH, Zebiak SE, Kleeman R et al (2003) A new interme- diate coupled model for El Nifio simulation and prediction. Geophys Res Lett 30:19.
  • 9Saha S, Nadiga S, Thiaw C et al (2006) The NCEP climate forecast system. J Clim 19:3483-3517.
  • 10Stockdale TN, Anderson DLT, Balmaseda MA et al (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455-471.

共引文献46

同被引文献46

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部