摘要
Textured hexagonal boron nitride(h-BN)matrix composite ceramics were prepared by hotpressing using different contents of 3Y_(2)O_(3)–5Al_(2)O_(3)(molar ratio of 3:5)as the sintering additive.During hot-pressing,the liquid Y_(3)Al_(5)O_(12)(YAG)phase showing good wettability to h-BN grains was in situ formed through the reaction between Y_(2)O_(3) and Al_(2)O_(3),and a coherent relationship between h-BN and YAG was observed with[010]_(h-BN)//[111]_(YAG) and(002)_(h-BN)//(321)_(YAG).In the YAG liquid phase environment formed during hot-pressing,plate-like h-BN grains were rotated under the uniaxial sintering pressure and preferentially oriented with their basal surfaces perpendicular to the sintering pressure direction,forming textured microstructures with the c-axis of h-BN grains oriented parallel to the sintering pressure direction,which give these composite ceramics anisotropy in their mechanical and thermal properties.The highest texture degree was found in the specimen with 30 wt%YAG,which also possesses the highest anisotropy degree in thermal conductivity.The aggregation of YAG phase was observed in the specimen with 40 wt%YAG,which resulted in the buckling of h-BN plates and significantly reduced the texture degree.
基金
This work was supported by the National Natural Science Foundation of China(Nos.52072089,51832002,51602074,and 51672060)
the Heilongjiang Touyan Team Program.