期刊文献+

Composite excitation multi-extension direction defect magnetic flux leakage detection technology 被引量:1

复合激励多延展方向缺陷漏磁检测技术
下载PDF
导出
摘要 In the traditional pipeline magnetic flux leakage(MFL)detection technology,circumferential or axial excitation is mainly used to excite the magnetic field of defects.However,the domestic and foreign pipeline detection devices currently in operation are mainly axial excitation MFL detection tools,in which circumferential cracks can be clearly identified,but the detection sensitivity of axial cracks is not high,thus forming a detection blind zone.Therefore,a composite excitation multi-extension direction defect MFL detection method is proposed,which can realize the simultaneous detection of axial and circumferential defects.On the basis of the electromagnetic theory Maxwell equation and Biot Savart law,a mathematical model of circumferential and axial magnetization is firstly established.Then finite element simulation software is used to establish a model of a new type of magnetic flux leakage detection device,and a simulation analysis of crack detection in multiple extension directions is carried out.Finally,under the conditions of the relationship model between the change rate of leakage magnetic field and external excitation intensity under unsaturated magnetization and the multi-stage coil magnetization model,the sample vehicle towing experiment is carried out.The paper aims to analyze the feasibility and effectiveness of the new magnetic flux leakage detection device for detecting defects in different extension directions.Based on the final experimental results,the new composite excitation multi extension direction leakage magnetic field detector has a good detection effect for defects in the axial and circumferential extension directions.
作者 WEI Minghui TU Fengmiao ZHANG Peng JIANG Lixia JIANG Pengbo JING Yu 韦明辉;涂凤秒;张鹏;江丽霞;姜蓬勃;敬彧(西南石油大学机电工程学院,四川成都610500;肯辛顿校区新南威尔大学,肯辛顿新南威尔2052)
出处 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第2期156-165,共10页 测试科学与仪器(英文版)
基金 National Natural Science Foundation of China(No.51804267) State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1610)。
关键词 composite excitation magnetic flux leakage(MFL) multi-extension direction defect pipeline detection 复合激励 励磁漏磁 多延展方向缺陷 管道检测
  • 相关文献

参考文献7

二级参考文献45

  • 1杨广强,B.F SpencerJr,J.D.Carlson,M.K. Sain.足尺磁流变阻尼器的建模及动态特性[J].地震工程与工程振动,2001,21(S1):8-23. 被引量:32
  • 2CORBETr K T, BOWEN R R, PETERSEN C W. Use of high-strength line pipe can improve economic of long-dis- tance gas lines[ J]. Oil and Gas Journal (S0030-1388), 2003, 101(46) : 56-61.
  • 3ROMERO RAMiREZ A, MASON J S D, PEARSON N. Experimental study to differentiate between top and bot- tom defects for MFL tank floor inspections[ J]. NDT & E International, 2009, 42( 1 ) : 16-21.
  • 4SINGH W S, RAO B P C, VAIDYANATHAN S, et al. Detection of leakage magnetic flux from near-side and far- side defects in carbon steel plates using a giant magneto- resistive sensor[J]. Measurement Science and Technolo- gy, 2008, 19(1) : 1-8.
  • 5KOVCS G. Simulation and measurement of magnetic based nondestructive tester [ J ]. Journal of Advanced Research in Physics, 2011, 2( 1 ) : 1-6.
  • 6LI X B, LI X, CHEN L, et al. Numerical simulation and experiments of magnetic flux leakage inspection in pipe- line steel[ J]. Journal of Mechanical Science and Tech- nology, 2009, 23( 1 ) : 109-113.
  • 7Ashour O,Rogers C A,Kordonsky W. Magnetorheo-logical fluids : materials, characterization, and devices[J]. Journal of Intelligent Material Systems and Struc-tures, 1996,7(2) : 123 -130.
  • 8Jolly M R, Bender J W, Carlson J D. Properties andapplications of commercial magnetorheological fluids[J]. Journal of Intelligent Material Systems and Struc-tures, 1999, 10(1) ; 5-13.
  • 9Yao G Z, Yap F F,Chen G,et al. MR damper and itsapplication for semi-active control of vehicle suspensionsystem [ J]. Mechatronics, 2002, 12(7) : 963 -973.
  • 10Xu Z D,Shen Y P, Guo Y Q. Semi-active control ofstructures incorporated with magnetorheological dampersusing neural networks [ J]. Smart Materials and Struc-tures, 2003, 12(1) ; 80-87.

共引文献57

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部