期刊文献+

基于迁移学习多层级融合的运动想象EEG辨识算法 被引量:5

EEG identification algorithm of motor imagination basedon multi-level fusion of transfer learning
下载PDF
导出
摘要 为了准确获取运动想象脑电信号的全局特征和个体间的共性特征,进而提高其分类准确率和模型鲁棒性,提出一种参数共享迁移学习的融合卷积神经网络算法。首先把源域上训练完成的网络逐层迁移至目标网络以获取最佳迁移层。其次,在迁移层后分别连接不同数量的卷积-池化块构成4个不同深度的卷积网络,并将其并行融合后连接分类器得到分类结果。利用BCI竞赛IV Datasets 2a对提出方法进行实验分析。结果显示,使用100%和50%样本时所有受试者的平均辨识率分别为80.85%和78.9%,验证了提出方法在全局特征提取上的有效性小样本问题上的优势。 In order to accurately obtain the global characteristics of motor imaging EEG signals and the common characteristics between individuals,and then improve its classification accuracy and model robustness,a fusion convolutional neural network algorithm with parameter sharing transfer learning is proposed.First,the trained model on the source domain is migrated layer by layer to the target network to obtain the best migration layers.Secondly,after the migration layers,different numbers of convolution-pooling blocks are connected to form four convolutional networks with different depths,and they are merged in parallel and finally the classification results are obtained through the classifier.Use the BCI competition IV Datasets 2 a to conduct experimental analysis on the proposed method.The results show that the average recognition rate of all subjects when using 100%and 50%samples is 80.85%and 78.9%,respectively,which verifies the effectiveness of the proposed method on global feature extraction and the advantages of small sample problems.
作者 周强 田鹏飞 Zhou Qiang;Tian Pengfei(School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'an 710021,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2021年第12期174-181,共8页 Journal of Electronic Measurement and Instrumentation
基金 陕西省科技计划项目(2019GY-090) 咸阳市科技计划项目(2017K02-06)资助。
关键词 运动想象脑电信号 卷积神经网络 迁移学习 多层级融合网络模型 motor imagination-EEG signal convolutional neural network transfer learning multi-layers network fusion model
  • 相关文献

参考文献8

二级参考文献55

  • 1张毅,杨柳,李敏,罗元.基于AR和SVM的运动想象脑电信号识别[J].华中科技大学学报(自然科学版),2011,39(S2):103-106. 被引量:7
  • 2刘伯强,张振旺,刘忠国,高均波,于兰兰.一种运动想象脑电分类算法的研究[J].生物医学工程研究,2007,26(1):20-23. 被引量:2
  • 3EOG Artifact Correction from EEG Recording Using Sta- tionary Subspace Analysis and Empirical Mode Decomposition [J]. Sensors,2013,11 (13) : 14839-14859.
  • 4Ghaheri H, Ahmadyfard A R. Extracting Common Spatial Patterns from EEG Time Segments for Classifying Motor Imagery Classes in a Brain Computer Interface (BCI) [ J ]. Seientia Iraniea D, 2013,20(6) :2061-2072.Neuroeomputing, 2015,159 : 186-196.
  • 5Luis F, Nicolas Alortso, Rebeca Corralejo, et al. Adaptive Semi- Supervised Classification to Reduce Interscssion Non-Stationarity in Mulfielass Molor Imagery-Based Brain-Computer Interfaces [ J ].
  • 6Ge S, Wang R, Yu D. Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography [ J ]. Plos One, 2014,9(6) :e98019.
  • 7Feature. Extraction of Motor Imagery EEG Based on Wavelet Transform and Higher-Order Statistics [J]. International Journal of Wavelets, Muhiresolution and Information Processing, 2010, 3 (8) :373-384.
  • 8Falzon Owen, Camileri Kenneth P, Muscat Joseph. The Analytic Common Spatial Patterns Method for EEG-Based BCI Data [J]. Journal of Neural Engineering, 2012 : 9.
  • 9Wan Baikun, Liu Yangang, Ming Dong, et al. Feature Recognition of Multi-Class Imaginary Movements in Brain-Computer Interface [ C ]//Proceedings of the International Conference on Virtual Envi- ronments, Human-Computer Interfaces and Measurements Sys- tems. Hong Kong: IEEE, 2009 : 250-254.
  • 10Li M A, Lin L, Jia S M. Multi-Class hnagcry EEG Recognition Based on Adaptive Subject-Based Feature Extraction and SVM- BP Classifier [J]. International Conference on Mecbatronics and Automation(ICMA), IEEE, 2011 : 1184-1189.

共引文献221

同被引文献31

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部