期刊文献+

Deep Learning Predicts Stress–Strain Relations of Granular Materials Based on Triaxial Testing Data 被引量:4

下载PDF
导出
摘要 This study presents an AI-based constitutive modelling framework wherein the prediction model directly learns from triaxial testing data by combining discrete element modelling(DEM)and deep learning.A constitutive learning strategy is proposed based on the generally accepted frame-indifference assumption in constructing material constitutive models.The low-dimensional principal stress-strain sequence pairs,measured from discrete element modelling of triaxial testing,are used to train recurrent neural networks,and then the predicted principal stress sequence is augmented to other high-dimensional or general stress tensor via coordinate transformation.Through detailed hyperparameter investigations,it is found that long short-term memory(LSTM)and gated recurrent unit(GRU)networks have similar prediction performance in constitutive modelling problems,and both satisfactorily predict the stress responses of granular materials subjected to a given unseen strain path.Furthermore,the unique merits and ongoing challenges of data-driven constitutive models for granular materials are discussed.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期129-144,共16页 工程与科学中的计算机建模(英文)
基金 This work is partially supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.41606213,51639004 and 12072217).
  • 相关文献

同被引文献30

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部