期刊文献+

低复杂度自适应容积卡尔曼滤波算法 被引量:9

Low-complexity adaptive cubature Kalman filter algorithm
下载PDF
导出
摘要 确定采样型滤波算法中的容积卡尔曼滤波(CKF)算法滤波性能优良,但是却难以克服目标模型不确定性或者目标状态突变带来的影响。构造强跟踪CKF能有效改善算法的自适应性,但是在求解渐消因子时大大增加了计算量。为此,提出一种低复杂度自适应CKF算法,通过设立基于新息的自适应修正判决准则和修正方式,直接对状态预测值进行修正,使滤波算法能及时跟上目标真实状态,以提高滤波精度。使用浮点操作数计算并分析了CKF算法、强跟踪CKF算法及所提算法的复杂度,同时将3种算法应用在建模不准确的目标跟踪中,并进行仿真验证。仿真结果表明:在目标建模不匹配的情况下,低复杂度自适应CKF算法和强跟踪CKF算法都能保持较好的滤波精度和数值稳定性,同时所提算法在算法复杂度上有明显改善。 Cubature Kalman filter(CKF)with good filtering performance is one of the deterministic sampling filtering algorithms,but it is not able to overcome the impact caused by the target model uncertainty or the mutation of the target state.Constructing strong tracking CKF can effectively improve the adaptability of the algorithm,but the computation is greatly increased when solving the fading factor.A low-complexity adaptive CKF algorithm is proposed to solve the above problems.By establishing adaptive judgment criteria and amending method based on innovation sequence,the predicted state value is directly amended,so that the filtering algorithm can keep up with the real state of the target in time,and thus improve the filtering accuracy.The complexity of CKF,strong tracking CKF and the proposed algorithm are calculated and analyzed by using floating point operations.At the same time,the above three algorithms are applied to target tracking with inaccurate modeling,and are verified through simulation.The simulation results show that both the proposed algorithm and the strong tracking CKF algorithm can maintain better filtering accuracy and numerical stability in the case of mismatched target modeling,and the proposed algorithm has obvious improvement in algorithm complexity.
作者 李春辉 马健 杨永建 甘轶 LI Chunhui;MA Jian;YANG Yongjian;GAN Yi(Aeronautics Engineering College,Air Force Engineering University,Xi'an 710038,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期716-724,共9页 Journal of Beijing University of Aeronautics and Astronautics
基金 空军工程大学校长基金(XZJ2020039)。
关键词 容积卡尔曼滤波(CKF) 目标模型不确定性 强跟踪滤波器 自适应修正 算法复杂度 cubature Kalman filter(CKF) target model uncertainty strong tracking filter adaptive amending algorithm complexity
  • 相关文献

参考文献10

二级参考文献72

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 3Arulampalam S, Askell S, Gordom N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].IEEE Trans. on Signal Processing,2002,50(2) :174 - 188.
  • 4Fu X Y, Jia Y M. An Improvement on resampling algorithm of particle filters[J~. IEEE Trans. on Signal Processing, 2010, 58(10) :5414 - 5420.
  • 5Kabaoglu N. Target tracking using particle filters with support vector regression[J]. IEEE Trans. on Vehicular Technology, 2009,58(5) :2569- 2573.
  • 6Ito K, Xiong K. Gaussian filters for nonlinear filtering problems[J]. IEEE Trans. on Automatic Control, 2000,45(5) : 910 - 927.
  • 7Arasaratnam I, Haykin S, Elliott R J. Discrete-time nonlinear filtering algorithms using Gauss Hermite quadrature[J]. Pro ceeding of the IEEE,2007,95(5) :953 - 977.
  • 8Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans. on Automatic Control, 2009,54(6) : 1254 - 1269.
  • 9Arasaratnam I, Haykin S, Hurd T R. Cubature Kalman filtering for continuous-discrete systems: theory and simulations[J]. IEEE Trans. on Signal Processing ,2010,58(10) :4977 - 4993.
  • 10Li X R, Jilkov V P. A survey of maneuvering target tracking part Ⅱ ballistic target models[C]// Proc. of Signal and Data Processing of Small Targets, 2001 : 559 - 581.

共引文献232

同被引文献73

引证文献9

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部