期刊文献+

Normalized solutions and mass concentration for supercritical nonlinear Schrodinger equations

原文传递
导出
摘要 In this paper,we deal with the existence and concentration of normalized solutions to the supercritical nonlinear Schrodinger equation {-Δu+V(x)u=μ_(q)u+a|u|^(q)u in R^(2),∫_(R^(2))|u|^(2)dx=1,where μ_(q) is the Lagrange multiplier.We show that for q>2 close to 2,the problem admits two solutions:one is the local minimal solution u_(q) and the other one is the mountain pass solution v_(q).Furthermore,we study the limiting behavior of u_(q) and v_(q) when q→2_(+).Particularly,we describe precisely the blow-up formation of the excited state v_(q).
出处 《Science China Mathematics》 SCIE CSCD 2022年第7期1383-1412,共30页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11671179 and 11771300) The second author was supported by National Natural Science Foundation of China(Grant No.11701260) Natural Science Foundation of Jiangxi Province(Grant Nos.GJJ161112 and GJJ180946)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部