期刊文献+

基于经验模态分解的室内指纹定位算法

Indoor fingerprint localization algorithm based on empirical mode decomposition
下载PDF
导出
摘要 WiFi信号的波动问题是影响指纹定位精度的主要因素之一,针对该问题设计了基于经验模态分解(EMD)的室内指纹定位算法,利用EMD方法在保持信号原有特征的同时实现了平滑噪声的目的。同时,针对传统的加权K最邻近(WKNN)算法在参考点数量大、指纹特征维度高时存在的计算量大、定位实时性低的问题,采用Ball Tree的近邻检索方法优化指纹匹配阶段的数据查询结构,提高了指纹匹配的速度。实验结果表明:相较于常用的传统WiFi指纹定位算法,所提基于经验模态分解的室内指纹定位算法可获得17%以上定位误差的改善,同时指纹匹配耗时减少了45%左右,有效提高了定位的精度与实时性。 The fluctuation problem of WiFi signal is one of the main factors affecting the accuracy of fingerprint localization.In order to solve the problem,an indoor fingerprint localization algorithm based on Empirical Modal Decomposition(EMD)was designed,and the EMD method was used to achieve the purpose of smoothing the noise while maintaining the original characteristics of the signal.At the same time,aiming at the problems of large amount of calculation and low real-time localization of the traditional Weighted K-Nearest Neighbor(WKNN)algorithm when the number of reference points is large and the fingerprint feature dimension is high,the Ball Tree’s nearest neighbor retrieval method was used to optimize the data query structure in the fingerprint matching stage and improve the speed of fingerprint matching.The experimental results show that,compared with the commonly used traditional WiFi fingerprint localization algorithm,the proposed indoor fingerprint localization algorithm based on empirical mode decomposition can obtain more than 17%improvement in localization error while the fingerprint matching time is reduced by about 45%,which effectively improves the accuracy and effectiveness of localization.
作者 刘云龙 孟凤莹 周蓉 LIU Yunlong;MENG Fengying;ZHOU Rong(College of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《计算机应用》 CSCD 北大核心 2022年第S01期247-251,共5页 journal of Computer Applications
关键词 室内指纹定位 信号波动 经验模态分解 Ball-Tree算法 加权K最邻近算法 indoor fingerprint localization signal fluctuation Empirical Mode Decomposition(EMD) Ball-Tree algorithm Weighted K-Nearest Neighbor(WKNN)algorithm
  • 相关文献

参考文献5

二级参考文献33

  • 1梅红,岳东杰.时间序列分析在变形监测数据处理中的应用[J].现代测绘,2005,28(6):14-16. 被引量:37
  • 2廖庆斌,李舜酩.一种旋转机械振动信号特征提取的新方法[J].中国机械工程,2006,17(16):1675-1679. 被引量:23
  • 3Peng Z K,Peter W T,Chu F L.An improved Hilbert-Huang transform and its application in vibration analysis[J].Journal of Sound and Vibration,2005,286(1/2):187-205.
  • 4Shinde A,Hou Z.A wavelet packet based sifting process and its application for structural health monitoring[C]//Proceedings of the American Control Conference,2004:4219-4224.
  • 5Wang W J,McFadden P D.Application of orthogonal wavelets to early gear damage detection[J].Mechanical Systems and Signal Processing,1995,9(5):497-507.
  • 6Lin J.Feature extraction of machine sound using wavelet and its application in fault diagnosis[J].NDT and E International,2001,34(1):25-30.
  • 7Peng Z K,Chu F L.Application of the wavelet transform in machine condition monitoring and fault diagnostics:a review with bibliography[J].Mechanical Systems and Signal Processing,2004,18(2):199-221.
  • 8Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of Royal Society of London Series A,1998,454:903-995.
  • 9Huang N E,Shen Z,Long S R.A new view of nonlinear water waves:the Hilbert spectrum[J].Annual Review of Fluid Mechanics,1999,31:417-457.
  • 10魏宝琴,李白萍.最优小波基的选取原则[J].甘肃科技,2007,23(10):42-43. 被引量:14

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部