摘要
Magnetic refrigeration(MR)by utilizing the magnetocaloric(MC)effect is recognized as one of the most potential promising solid state environmentally friendly and high efficiency alternative method to the well-used state-of-the-art gas compression cooling technique.In this work,a systematic investigation of quinary equi-atomic rare-earths(RE)based Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) high-entropy(HE)amorphous alloy in terms of the microstructure,magnetic and magnetocaloric(MC)properties have been reported.The Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) exhibits promising glass forming ability with an undercooled liquid region of 72 K.Excellent cryogenic MC performances can be found in wide temperature from∼25 and∼75 K,close to H_(2) and N_(2) liquefaction,respectively.Apart from the largest magnetic entropy change(-S M)reaches 17.84 J/(kg K)with 0-7 T magnetic field change,corresponding refrigerant capacity(RC)attains a giant value of 1030 J/kg.The promising cryogenic MC performances together with the unique HE amorphous characterizations make the quinary Er_(20) Ho_(20) Gd_(20) Ni_(20) Co_(20) HE amorphous alloy attractive for cryogenic MR applications.
基金
supported by National Natural Science Foundation of China (No. 52071197)
Science and Technology Committee of Shanghai Municipality (Nos. 19ZR1418300 and 19DZ2270200)
Independent Research and Development Project of State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University (No. SKLASS 2020-Z06)。