摘要
Utilizing the extraction residue(ER)of direct coal liquefaction residue as a gasification feedstock has significant economic value.But the characteristic of high ash and iron in the ER would increase the risk of corrosion of the refractory materials and affect the long-term operation of the gasifier.In this work,corrosion experiments of molten slag derived from a mixture of 20 wt%ER and 80 wt%coal on a high-chromia refractory brick and SiC brick were carried out using a rotary-drum furnace in a simulated gasification atmosphere.The experimental results show that the viscosity of the poured slag is larger as compared to the initial ash sample at the same temperature,which suggests that the viscosity-temperature relationship of the poured slag should be used as the reference for the operation temperature of the gasifier to ensure that the slag can flow during operation.For a high-chromia refractory brick,iron oxides in molten slag could react with Cr_(2)O_(3) in the refractory matrix but,because the aggregate was not found to be damaged,the damage to the matrix structure was the key factor for causing the corrosion of the high-chromia refractory brick.Metallic iron was observed in the exposed SiC brick,which indicated that the reaction between the iron oxides in the slag and SiC occurred,forming metallic iron and SiO_(2).The corrosion of a SiC brick by molten slag depended mainly on the dissolution of Al_(2)O_(3) particles and the reaction between iron oxides in the molten slag and SiC particles.Therefore,the high iron content in coal ash had a serious influence on the corrosion of refractory materials.More efforts need to be made on coal blended with ER as a gasification feedstock in the future.
基金
This work was supported by the Science and Technology Innovation Project of CHN Energy(grant number GJNY-21-91)
the Science and Technology Innovation Project of CHN Energy(grant number GJNY-20-119)
the National Key R&D program of China(grant number 2017YFB0602603).