摘要
基于协同过滤的算法是推荐系统中最重要的方法,由于冷启动和数据稀疏性的特点,限制了其推荐性能。为了应对以上问题,提出了知识图谱和轻量级图卷积网络推荐系统相结合的模型,该模型通过将知识图谱中的各个实体(项目)进行多次迭代嵌入传播以获取更多的高阶邻域信息,通过轻量聚合器进行聚合,进而预测用户和项目之间的评分。最后,在3个真实的数据集上MovieLens-20M、Last.FM和Book-Crossing的实验结果表明,该模型与其他基准模型相比可以得到较好的性能。
The algorithm based on collaborative filtering is the most important method in the recommendation system.However,the cold start and data sparsity characteristics limit its recommendation performance.We propose a model that combines a knowledge graph and a lightweight graph convolutional network recommendation system to address the aforementioned issues.The model embeds and propagates multiple items in the knowledge graph to obtain more highorder neighborhood information.It aggregates through a lightweight aggregator to predict the score between users and items.Finally,the experimental findings of MovieLens-20M,Last.FM and Book-Crossing on three real datasets show that compared with other benchmark models,this model can achieve better performance.
作者
马甜甜
杨长春
严鑫杰
贾音
蔡聪
MA Tiantian;YANG Changchun;YAN Xinjie;JIA Yin;CAI Cong(School of Computer Science and Artificial Intelligence,Changzhou University,Changzhou 213000,China)
出处
《智能系统学报》
CSCD
北大核心
2022年第4期721-727,共7页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金项目(51877013)
江苏省研究生科研创新基金项目(KYCX21_2842).
关键词
图卷积网络
知识图谱
推荐系统
嵌入传播
协同过滤
稀疏性
邻域信息
轻量聚合器
graph convolutional network
knowledge graph
recommendation system
embedded propagation
collaborative filtering
sparsity
neighborhood information
lightweight aggregator