期刊文献+

Automated Identification Algorithm Using CNN for Computer Vision in Smart Refrigerators 被引量:2

下载PDF
导出
摘要 Machine Learning has evolved with a variety of algorithms to enable state-of-the-art computer vision applications.In particular the need for automating the process of real-time food item identification,there is a huge surge of research so as to make smarter refrigerators.According to a survey by the Food and Agriculture Organization of the United Nations(FAO),it has been found that 1.3 billion tons of food is wasted by consumers around the world due to either food spoilage or expiry and a large amount of food is wasted from homes and restaurants itself.Smart refrigerators have been very successful in playing a pivotal role in mitigating this problem of food wastage.But a major issue is the high cost of available smart refrigerators and the lack of accurate design algorithms which can help achieve computer vision in any ordinary refrigerator.To address these issues,this work proposes an automated identification algorithm for computer vision in smart refrigerators using InceptionV3 and MobileNet Convolutional Neural Network(CNN)architectures.The designed module and algorithm have been elaborated in detail and are considerably evaluated for its accuracy using test images on standard fruits and vegetable datasets.A total of eight test cases are considered with accuracy and training time as the performance metric.In the end,real-time testing results are also presented which validates the system’s performance.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第5期3337-3353,共17页 计算机、材料和连续体(英文)
基金 This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/10),Taif University,Taif,Saudi Arabia.
  • 相关文献

同被引文献20

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部