期刊文献+

Ontology Based Ocean Knowledge Representation for Semantic Information Retrieval 被引量:1

下载PDF
导出
摘要 The drastic growth of coastal observation sensors results in copious data that provide weather information.The intricacies in sensor-generated big data are heterogeneity and interpretation,driving high-end Information Retrieval(IR)systems.The Semantic Web(SW)can solve this issue by integrating data into a single platform for information exchange and knowledge retrieval.This paper focuses on exploiting the SWbase systemto provide interoperability through ontologies by combining the data concepts with ontology classes.This paper presents a 4-phase weather data model:data processing,ontology creation,SW processing,and query engine.The developed Oceanographic Weather Ontology helps to enhance data analysis,discovery,IR,and decision making.In addition to that,it also evaluates the developed ontology with other state-of-the-art ontologies.The proposed ontology’s quality has improved by 39.28%in terms of completeness,and structural complexity has decreased by 45.29%,11%and 37.7%in Precision and Accuracy.Indian Meteorological Satellite INSAT-3D’s ocean data is a typical example of testing the proposed model.The experimental result shows the effectiveness of the proposed data model and its advantages in machine understanding and IR.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第3期4707-4724,共18页 计算机、材料和连续体(英文)
基金 This work is financially supported by the Ministry of Earth Science(MoES),Government of India,(Grant.No.MoES/36/OOIS/Extra/45/2015),URL:https://www.moes.gov.in。
  • 相关文献

参考文献2

二级参考文献26

  • 1Shvaiko P, Euzenat J. Ontology matching: State of the art and future challenges. IEEE Trans. Knowl. Data Eng., 2013, 25(1): 158-176.
  • 2Ferrara A, Nikolov A, Noessner J et al. Evaluation of instance matching tools: The experience of OAEI. Web Smantics: Science, Services and Agents on the World Wide Web, 2013, 21: 49-60.
  • 3Bellahsene Z, Bonifati A, Rahm E. Schema Matching and Mapping. Springer-Verlag Berlin, Heidelberg, 2011. Huber J, Sztyler T, Noessner Jet al. CODI: Combinato- rial optimization for data integration Results for OAEI 2011.
  • 4In Proc. the 6th International Workshop on Ontology Matching, Oct. 2011, pp.134-141.
  • 5Volz J, Bizer C, Gaedke M, Kobilarov G. Discovering and maintaining links on the web data. In Proc. the 8th Inter- national Semantic Web Conference, Oct. 2009, pp.650-665.
  • 6Suchanek F M, Abiteboul S, Senellart P. PARIS: Probabilis- tic alignment of relations, instances, and schema. PVLDB, 2011, 5(3): 157-168.
  • 7Lacoste-Julien S, Palla K, Davies A, Kasneci G, Graepel T, Ghahramani Z. SIGMa: Simple greedy matching for aligning large knowledge bases. In Proc. the 19th ACM SIGKDD International Conference on Knowledge Discov- ery and Data Mining, Aug. 2013, pp.572-580.
  • 8Li 3, Tang J, Li Y, Luo Q. RiMOM: A dynamic multistrat- egy ontology alignment framework. IEEE Trans. Knowl. Data Eng., 2009, 21(8): 1218-1232.
  • 9B6hm C, de Melo G, Naumann F, Weikum G. LINDA: Distributed web-of-data-scale entity matching. In Proc. the 21st CIKM, Oct.29-Nov.2, 2012, pp.2104-2108.
  • 10Diallo G, Ba M. Effective method for large scale ontology matching. In Proc. the 5th SWAT4LS, Nov. 2012.

共引文献9

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部