摘要
设G=(V(G),E(G))为n阶m条边的无向图,其顶点集为V(G)={v1,v2,…,vn},边集为E(G),G的反对称分割指数为ISDD(G)=∑_(v_(i)v_(j)(didj/d_(i)(2)+d_(j)^(2))).本文利用不等式及图的不变量对ISDD(G)和其他指数的关系进行了研究,得到了ISDD(G)的一些上、下界,并且证明了在一定条件下,ISDD(G)指数和对称分割指数SDD(G)是线性相关的.
Let G=(V(G),E(G))be an undirected graph with n vertices and m edges,its vertex set be V(G)={v1,v2,…,vn},and the edge set be E(G).The ISDD index of a graph G was defined as ISDD(G)=∑_(v_(i)v_(j)(didj/d_(i)(2)+d_(j)^(2))).In this paper,the relationship ISDD(G)with other indices was studied by using inequalities and graph invariants,and the new upper and lower bounds of the ISDD index of a graph were obtained,and it was proved that ISDD(G)and SDD(G)were linearly correlated under certain conditions.
作者
程宇
邵燕灵
CHENG Yu;SHAO Yanling(School of Science,North University of China,Taiyuan 030051,China)
出处
《中北大学学报(自然科学版)》
CAS
2022年第5期385-389,共5页
Journal of North University of China(Natural Science Edition)
基金
山西省自然科学基金资助项目(201901D211227)。
关键词
图
对称分割指数
反对称分割指数
度
graph
symmetric division deg(SDD)index
inverse symmetric division deg(ISDD)index
degree