期刊文献+

AgBr/g-C_(3)N_(4)复合光催化剂制备及其可见光催化性能

Preparation of AgBr/g-C_(3)N_(4) Composite Photocatalyst and Its Visible Light Catalytic Performance
下载PDF
导出
摘要 文章采用溶剂热法合成不同形貌和结构的g-C_(3)N_(4)半导体,超声法将AgBr原位沉淀在g-C_(3)N_(4)表面,成功制备出不同质量比AgBr/g-C_(3)N_(4)复合光催化剂。借助FE-SEM、BET、TGA、XRD、UV-Vis DRS等方法对制备样品的晶体结构、形貌、比表面积、热稳定性以及其光学性能进行了表征。结果表明:g-C_(3)N_(4)半导体呈现纳米管状结构,直径约为300 nm,管长约为800 nm;AgBr/g-C_(3)N_(4)-20%复合光催化剂比表面积可达为40.727 m^(2)/g,孔体积0.110 cm^(3)/g,孔半径为17.171 nm。以罗丹明B(RhB)为模拟污染物,考察光催化降解性能,结果表明AgBr/g-C_(3)N_(4)质量比为20%时,可见光催化80 min后,RhB降解率可达到97.4%。光催化机理研究表明,空穴(h+)是光催化降解RhB的主要活性物种,其次为超氧自由基(·O_(2)-)与羟基自由基(·OH),根据能带理论推测AgBr/g-C_(3)N_(4)符合Z型电荷转移机制。 g-C_(3)N_(4) semiconductors with different morphologies and structures were synthesized by solvothermal method.AgBr was in-situ precipitated on the surface of g-C_(3)N_(4) by ultrasonic method,and AgBr/g-C_(3)N_(4) composite photocatalysts with different mass ratios were successfully prepared.The crystal structure,morphology,specific surface area,thermal stability and optical properties of the samples were characterized by FE-SEM,BET,TGA,XRD and UV-Vis DRS.The results show that the g-C_(3)N_(4) semiconductor has a tubular nanorod structure with a diameter of about 300 nm and a length of about 800 nm.The specific surface area,pore volume and pore radius of AgBr/g-C_(3)N_(4)-20%composite photocatalyst were 40.727 m^(2)/g,0.110 cm^(3)/g and 17.171 nm,respectively.Rhodamine B(RhB)was used as the simulated pollutant to investigate the photocatalytic degradation performance.The results showed that when the mass ratio of AgBr/g-C_(3)N_(4) was 20%,the degradation rate of RhB could reach 97.4%after 80 min.The study of photocatalytic mechanism showed that hole(h+)was the main active species,followed by superoxide radical(·O_(2)-)and hydroxyl radical(·OH).
作者 徐泽忠 高雅 黄有鹏 谢劲松 韩成良 XU Zezhong;GAO Ya;HUANG Youpeng;XIE Jinsong;HAN Chengliang(Analysis and Testing Center,Hefei University,Hefei 230601,China;Department of Chemical and Materials Engineering,Hefei University,Hefei 230601,China)
出处 《环境科学与技术》 CAS CSCD 北大核心 2022年第6期64-69,共6页 Environmental Science & Technology
基金 2021年安徽高校自然科学研究重点项目(KJ2021A1018)。
关键词 AgBr/g-C_(3)N_(4) 光催化降解 电荷转移机制 Z型异质结 有机染料 AgBr/g-C_(3)N_(4) photocatalytic degradation charge transfer mechanism Z-type heterojunction organic dyes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部