摘要
The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.