摘要
Two-dimensional(2D)semiconductor heterojunctions are considered as an effective strategy to achieve fast separation of photoinduced carriers.Herein,a novel CoWO_(4)/g-C_(3)N_(4)(CWO/CN)p–n junction was synthesized using an electrostatic selfassembly method.The constructed 2D/2D p–n heterostructure had a rich hetero-interface,increased charge density,and fast separation efficiency of photoinduced carriers.The in-situ Kelvin probe force microscopy confirmed that the separation pathway of photoinduced carriers through the interface obeyed an II-scheme charge transfer mechanism.Experimental results and density functional theory calculations indicated the differences of work function between CWO and CN induced the generation of built-in electric field,ensuring an efficient separation and transfer process of photoinduced carriers.Under the optimized conditions,the CWO/CN heterojunction displayed enhanced photocatalytic H_(2)generation activity under full spectrum and visible lights irradiation,respectively.Our study provides a novel approach to design 2D/2D hetero-structured photocatalysts based on p–n type semiconductor for photocatalytic H_(2)generation.
基金
Outstanding Talent Research Fund of Zhengzhou University,China Postdoctoral Science Foundation(Nos.2020TQ0277 and 2020M682328)
Central Plains Science and Technology Innovation Leader Project(No.214200510006)
Postdoctoral Science Foundation of Henan province(No.202002010).