摘要
图像信号在获取传输的过程中易被噪声污染,因而图像去噪一直以来是信息处理领域的热点之一。文章从空间域和频率域滤波去噪出发,探究了基于小波变换的模极大值去噪、多种阈值去噪等算法,并对不同去噪算法进行了比较及评价,指出了不同算法在图像去噪上的优势与不足,为数字图像的去噪提供一些新思路与新方法。
Image denoising has always been one of the hotspots in the field of information processing as Image signals are easily polluted by noise in the process of acquisition and transmission. Starting from filtering and denoising in spatial domain and frequency domain, this paper explores the algorithms such as the wavelet transform-based modulo maximum denoising and various threshold denoising algorithms, and different denoising algorithms are compared and evaluated. The advantages and disadvantages of different algorithms in image denoising are discussed, which provides some new ideas and methods for digital image denoising.
作者
汪太月
戴燕青
WANG Taiyue;DAI Yanqing(School of Science,Hubei University of Technology,Wuhan Hubei 430068;School of Mathematics and Statistics,Hubei Polytechnic University,Huangshi Hubei 435003)
出处
《湖北理工学院学报》
2022年第5期25-30,55,共7页
Journal of Hubei Polytechnic University
基金
国家自然科学基金项目(项目编号:61601417)
湖北省教育厅自然科学基金项目(项目编号:B2020044)
湖北工业大学科研项目(项目编号:BSQ2020102)。
关键词
小波变换
图像去噪
阈值去噪
比较评价
wavelet transform
image denosing
threshold denoising
comparison and evaluation