期刊文献+

Volatility Prediction via Hybrid LSTM Models with GARCH Type Parameters

下载PDF
导出
摘要 Since the establishment of financial models for risk prediction,the measurement of volatility at risky market has improved,and its significance has also grown.For high-frequency financial data,the degree of investment risk,which has always been the focus of attention,is measured by the variance of residual sequence obtained following model regression.By integrating the long short-term memory(LSTM)model with multiple generalized autoregressive conditional heteroscedasticity(GARCH)models,a new hybrid LSTM model is used to predict stock price volatility.In this paper,three GARCH models are used,and the model that can best fit the data is determined.
出处 《Proceedings of Business and Economic Studies》 2022年第6期37-46,共10页 商业经济研究(百图)
  • 相关文献

参考文献3

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部